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Abstract

Symmetries of Unimodal Singularities and Complex
Hyperbolic Reflection Groups

Joel Anthony Haddley

April 2011

In search of discrete complex hyperbolic reflection groups in a singularity

context, we consider cyclic symmetries of the 14 exceptional unimodal func-

tion singularities. In the 3-variable case, we classify all the symmetries for

which the restriction of the intersection form of an invariant Milnor fibre to

a character subspace has positive signature 1, and hence the corresponding

equivariant monodromy is a reflection subgroup of U(k − 1, 1). For such

subspaces, we construct distinguished vanishing bases and their Dynkin di-

agrams. For k = 2, the projectivised hyperbolic monodromy is a triangle

group of the Poincaré disk. For k = 3, we identify some of the projectivised

monodromy groups within a recently published survey by J. R. Parker.
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Chapter 1

Introduction

One of the most famous classical results in singularity theory is the Arnold

and Brieskorn discovery of the close relationship between simple function

singularities and Weyl groups Aµ, Dµ, Eµ [1, 6]. A few years after it, Arnold

extended the relationship to simple singularities with the Z2 reflection sym-

metry and Weyl groups Bµ, Cµ, F4.

Consideration of Zm symmetries of simple functions led in [11, 12, 13,

22] to the appearance of Shephard-Todd groups in function singularities.

The emphasis there was on realisations of the complex reflection groups as

equivariant monodromy groups acting on the appropriate character subspaces

in the homology of invariant Milnor fibres, and on the coincidence of the

discriminants of the reflection groups and of the Zm-equivariant functions.

A further series of papers [14, 15, 16], on cyclic symmetries of the parabolic

functions, brought in similar singularity realisations of certain complex crys-

tallographic groups [20].

In this thesis, we are naturally expanding the programme to cyclic sym-

metries of the 14 exceptional unimodal function singularities on one hand,

and complex hyperbolic reflection groups on the other. The basic idea is as

follows. In the 3-variable case, the intersection form on the vanishing homol-

ogy of an exceptional unimodal function f is non-degenerate and has positive

signature 2. Assume g is an automorphism of C3 of finite order m, and our

function is g-invariant. Then g acts on the second homology of the Milnor
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fibre f−1(ε), and decomposes it into a direct sum of the character subspaces

Hχ, χm = 1, on which g acts as multiplication by χ. Assume the rank 2

positive subspace of the intersection form splits between two character sum-

mands. Then we discover that the monodromy within a g-invariant versal

deformation of f acts as a complex hyperbolic reflection group on each of

the two summands. Developing further the technique introduced in papers

on cyclically symmetric functions [11, 12, 13], we can construct vanishing

bases in the hyperbolic summands and obtain the generating reflections as

the corresponding Picard-Lefschetz operators.

The main result of the thesis is a complete classification of the symmetries

of the 14 singularities, which split the positive subspace in the vanishing

homology, and the description of the complex hyperbolic groups arising. The

latter is done via construction of the distinguished vanishing bases in the

relevant character subspaces, and via calculation of the Dynkin diagrams

for such bases. All the rank 2 reflection groups obtained projectivise to the

triangle groups of the Poincaré disk, while projectivisations of some of our

rank 3 groups may be found in [18].

It should be noted that it is the first time when complex hyperbolic

reflection groups are appearing in a singularity theory context.

The thesis is organised as follows. Chapter 2 introduces the notion of

singularities with symmetry, recalls the definitions and constructions given

in [11, 12, 13], and states the exact problem we are solving in this thesis. In

Chapter 3 we give an exposition of results coming from previous papers (those

already mentioned as well as [14, 15, 16]), for ease of reference when consid-

ering the later chapters. The classifications for the invariant and equivariant

problems are given in Chapter 4. Finally, Chapter 5 discusses properties of

the monodromy groups and identifies some of the low dimensional groups.

The author wishes to acknowledge useful discussions with John Parker

and Anna Pratoussevitch on complex hyperbolic reflection groups, and con-

tinued help and support from the thesis supervisor Victor Goryunov. Thanks

also to Fawaz Alharbi, Graham Reeve and Öykü Yurttas for a friendly and

lively atmosphere in our postgraduate student office.
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Chapter 2

Singularities with Symmetries

2.1 Equivariant monodromy

2.1.1 Symmetries and deformations

Our main object of study will be pairs (f, g) consisting of a holomorphic

function germ f : (Cn+1, 0) → (C, 0) with an isolated singularity of right

equivalence class X (denoted X 3 f), and a finite order automorphism g of

(Cn+1, 0) such that f ◦ g = κf , for some constant κ ∈ C. The automorphism

will be called either an invariant symmetry of the function when κ = 1, or

an equivariant symmetry of the function when κ 6= 1. We will not distinguish

between pairs (g, κ) generating the same cyclic group acting on Cn+1 ⊕ C.
Since the automorphism g is constrained by f , we may identify g with a

linear map A ∈ GL(n + 1,C). This map may be diagonalised D = P−1AP ,

where matrices P−1, P may be viewed as diffeomorphic coordinate changes

on (Cn+1, 0) thus preserving the right equivalence class of f .

Assume the coordinates x0, . . . , xn in (Cn+1, 0) are chosen so that g is

diagonal according to the previous paragraph. Consider a deformation

Fg = f +
k∑
i=1

λiϕi (2.1)

of the function f , where the λi are parameters, and {ϕ1, . . . , ϕk} is the set
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of all g-equivariant (i.e. ϕi ◦ g = κϕi for all i) elements of a monomial basis

of the local ring Qf of f ,

Qf =
C [x0, . . . , xn]〈
∂f
∂x0
, . . . , ∂f

∂xn

〉 .
In the standard sense, the deformation F is a g-versal deformation of f . We

refer to Fg as an invariant or equivariant deformation of f (depending on

context).

All through the thesis, we use notation εm for e2πi/m, and reserve ω for ε3.

Example 2.1. Let f be a quasihomogeneous function of degree N with

respect to the weights w0, . . . , wn ∈ N of the coordinates xj on Cn+1. Assume

gcd(w0, . . . , wn) = 1, in which case N is the Coxeter number of f . Consider

the Coxeter transformation

C : xj 7→ ε
wj
N xj , j = 0, . . . , n,

of Cn+1. This is an invariant symmetry of f . The Coxeter element C gen-

erates a discrete subgroup of U(1) corresponding to the values of f making

one full anti-clockwise rotation in C about the origin. Take for an invariant

symmetry g of f a power of C that has order m: g = Cp, gm = id. Then

the ϕi in (2.1) are exactly those elements of a monomial basis of Qf whose

degrees are divisible by m.

In the equivariant case, suppose the deformation monomial of minimal

degree ϕ′ has degree d′. Then the symmetry g on the meromorphic function

f/ϕ′ is invariant, and the ϕi in 2.1 are exactly those elements of a monomial

basis of Qf whose degrees d are such that (d − d′) is divisible by m. This

generalisation also holds for the invariant case since the constant monomial

is of degree 0 (cf. [22] and [23]).

Example 2.2. Consider the singularity E12 with normal form f = x3+y7+z2

with the invariant symmetry g(x, y, z) = (x, ε7y, z). The order of g is 7. The

monomials preserved by this symmetry are 1, x of weight 0, 14 respectively.
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These are the only elements of a monomial basis for Qf with weights divisible

by 7 (see Table 2.1 on page 11).

We shall use the notation Λ for the base Ck with coordinates λ1, . . . , λk

of a g-miniversal deformation (2.1) of a function f .

Definition 2.3. The discriminant Σ ⊂ Λ of f is the set of all values λ ∈ Λ

of the parameters for which the members of the family Fg have critical value

0.

For a versal deformation (i.e. take g to be the identity) the deformation Fg

at a generic point λ ∈ Λ has no critical point with value 0 and its derivatives

are smooth. This is not necessarily true when g is not equal to the identity

map, and the following definition is required in order to maintain this generic

behaviour.

Definition 2.4. A deformation Fg is said to be smoothable if the discriminant

Σ ⊂ Λ is a hypersurface.

Since for an invariant deformation a non-zero constant function must be

among the ϕi, the deformation is smoothable.

Proposition 2.5. If an equivariant deformation is smoothable, then at least

one of the ϕi must be linear.

Proof. Assume otherwise. Then the ϕi of lowest degree must be at least

quadratic, and for any λ ∈ Λ there is a critical point at the origin of Cn+1

on the zero level.

In what follows we will be working with representatives of germs of functions

and sets we have introduced, but we will be still denoting them by the same

letters.

2.1.2 Roots of the Coxeter transformation

For a singularity X 3 f , let C be the Coxeter transformation of order N

given in coordinates by

C(x0, . . . ; f) = (εαax0, . . . ; f), (α, a) = 1, α, a ∈ Z

5



where α/a = wx0/N is the weight of x0, normalised so that the weight of f

is wf = 1. Take the canonical choice for the root

(εa)
1
s := εas,

which we apply to each coordinate in turn to define the map

C
1
s (x0, . . . ; f) = (εαasx0, . . . ; εsf).

The map C
1
s and each of its powers gives an equivariant symmetry of f .

Consider the bth power

C
b
s = (εαbasx, . . . , ε

b
sf),

where we may choose b such that gcd(b, s) = 1, since we otherwise would

have chosen a different value for s.

By proposition 2.5, any smoothable equivariant deformation has a linear

term in its deformation. Assume without loss of generality that this is the

monomial x0. Then

εαbas = εbs.

For this equality, we must choose b such that a|b. Since N is the Coxeter

number, we generate all possible non-equivalent equivariant symmetries by

letting b run through all divisors of N such that if bi and bj are two choices

for b, then bi and bj have pairwise distinct greatest common divisors with N

for all i 6= j. We may then find other equivariant symmetries by changing n.

The order of the symmetry is m = sN/b.

2.1.3 Basic equivariants

Definition 2.6. If g is an equivariant symmetry of the function f such

that the monomial x0 appears in the g-versal deformation, then it is an

invariant symmetry of the meromorphic function f/x0. We choose gx0 to be

a symmetry of this type of highest order, and call gx0 the basic equivariant

of f with respect to x0.

If we find gx = C
b
s , or this composed with an invariant symmetry, for some

6



b, s, then we may use the argument above to classify all equivariant defor-

mations of f preserving x0.

Most of the invariant symmetries that will appear in our consideration

are the involutions

ιI : xi 7→

{
xi, xi 6∈ I
−xi, xi ∈ I

where I ⊆ {x0, . . . , xn} is a subset of the coordinates. E.g.

ιx(x, y, z) = (−x, y, z).

Example 2.7. For E12 3 f = x3 + y7 + z2, the Coxeter transformation is

given by

C(x, y, z; f) = (ωx, ε7y,−z; f).

The basic equivariant gx in an invariant symmetry of highest order of the

meromorphic function f/x = x2 + y7/x+ z2/x. We may take

gx(x, y, z; f) = (−x, ε3
14y,−iz;−f),

and we have

gx = C
3
2 .

2.1.4 Symmetric Milnor fibre and its monodromy

To define a Milnor fibre of the function germ f with isolated singularity,

we follow the usual procedure. Namely, we take a closed ball B ⊂ Cn+1

of sufficiently small radius and centred at the origin, and assume that the

deformation base Λ is a very small ball. Then a Milnor fibre Vλ is F−1
λ (0)∩B

provided λ is non-discriminantal (λ ∈ Λ \ Σ). In good cases, for example

when the function is quasihomogeneous with positive weights, we may expand

our deformation representative from the product of the balls to the whole

Cn+1 × Λ. For more details see [5], Sections 1.7 and 1.10.

Let us fix a generic point ? ∈ Λ \Σ. The Milnor fibre V? is homotopic to

a wedge of µ n-spheres, where µ is the Milnor number of f . A symmetry g

7



sends V? into itself. Therefore, its nth homology, of total rank µ, is a direct

sum of character subspaces

Hn(V?,C) = ⊕χm=1Hχ , (2.2)

where m is the order of the automorphism g, and g acts as multiplication by

χ on Hχ.

There is a standard way to define elements of the Hχ analogous to the

ordinary Morse vanishing cycles. Namely, let W be the quotient of the fibre

V? by the action of the group Zm generated by g, and W ′ ⊂ W its subset

of irregular orbits. Since all functions Fλ in the family F are g-invariant

(or equivariant depending on context), a path in Λ \ Σ from the point ?

to a generic point of the discriminant defines - at least in all our cases - a

vanishing cycle σ ∈ Hn(W,W ′;Z): similar to what has been observed and

used in [2, 11, 12, 13], in all our cases it is easy to see a generator of the

relative integer homology which contracts to a point on the approach to the

discriminant. The inverse image of this relative cycle in V? consists of m

chains σ0 . . . , σm−1, with the orientation inherited from σ, and ordered in the

cyclic way:

g(σi) = σ(i+1) modm.

For appropriate values of χ (the notation χ denotes its conjugate), and in all

the cases which will follow, the linear combination

σχ =
m−1∑
i=0

χiσi

is a cycle, and thus provides an element of Hχ. We call σχ a vanishing χ-cycle.

See Figure 2.1. Examples of these calculations are given in Chapter 3.

The monodromy representation of the fundamental group π1(Λ \ Σ, ?) on

Hn(V?,C) is a direct sum of the representations on the individual summands

Hχ. We denote the corresponding monodromy groups Mχ.

Depending on the parity of n, the intersection form on Hn(V?,Z) naturally

extends to Hn(V?,C) in either an Hermitian or skew-Hermitian way. Assume

8



χ−1

1

χ
g

quotient map

χ−1

1

χ
g

quotient map

W W ′
σ σ

V? V?

Figure 2.1: Diagram showing χ-cycles as cyclic covers of chains.

that a vanishing χ-cycle σχ has a non-zero self-intersection number 〈σχ, σχ〉.
Then according to [4, 8, 11] the related Picard-Lefschetz operator in Mχ may

be brought into the form

hχ : c 7→ c+ (e− 1)
〈c, σχ〉
〈σχ, σχ〉

σχ,

where e is the eigenvalue of the operator on σχ. This is a (skew-)Hermitian

reflection on Hχ.

To obtain a generating set of the Mχ, we proceed in the traditional man-

ner. For this, we start with a generic line L ⊂ Λ passing through the base

point ?. Let c1, . . . , cr be the points at which L meets Σ. We choose a distin-

guished system of paths on L, that is, paths γ1, . . . , γr in L, starting at ? and

leading to the ci, which have no self- and mutual intersections except for the

point ? itself. The Picard-Lefschetz operators hi,χ on the Hχ corresponding

to the paths of the system generate Mχ. Thus knowledge of the eigenval-

ues of the hi,χ and of the intersection numbers of the χ-cycles vanishing at

c1, . . . , cr yields a description of the monodromy group Mχ.

2.2 The exceptional unimodal functions

Now assume that f is one of the 14 exceptional unimodal singularities and

n = 2 (see the table on page 185 of [3]). Table 2.1 gives a normal form of the

9



quasihomogeneous member of each of the 14 one-parameter families, along

with the weights of the coordinates, the Coxeter number N , a monomial

basis of the local ring and the weights of its elements. The subscript of the

singularity right equivalence type it the Milnor number µ of the singularity.

Pairs of functions with the same Coxeter number are dual in the sense of

Arnold. Any function with µ = 12 is self-dual.

An arbitrary member of a unimodal family is obtained by addition to the

normal form of a multiple of its Hessian, that is, of a multiple of the versal

monomial of top weight.

Assume we have two coordinate spaces, Cp
u1,...,up

and Cq
v1,...,vq

, with co-

ordinates of positive integer weights a1, . . . , ap and b1, . . . , bq. Then the

space of map-germs from (Cp, 0) to (Cq, 0) has a natural grading: a mono-

mial summand uα1
1 . . . u

αp
p in the jth coordinate function is assigned grading

α1a1 + · · ·+αpap− bj. For example, a quasihomogeneous automorphism g of

Cp has all its monomial terms of grading 0. The determinant Jac(g) of the

Jacobi matrix of such automorphism is a non-zero constant, which is easily

seen if the coordinates are ordered by the increase of their weights.

In what follows, we are restricting our attention to quasihomogeneous

symmetries of exceptional unimodal singularities.

2.2.1 Classification of splitting invariant symmetries

For each of the 14 singularities, the Hermitian intersection form on H2(V?,C)

is non-degenerate with positive signature 2. Our aim set in the introduction

is to obtain equivariant monodromy groups Mχ which are hyperbolic reflec-

tion groups, that is, the restriction of the intersection form to the summand

Hχ is non-degenerate and of positive signature 1. Hence the rank 2 posi-

tive subspace H+ ⊂ H2(V?,C) must split between two character subspaces

corresponding to a pair of distinct characters. We refer to a symmetry sat-

isfying this condition as a splitting symmetry , and to the two characters as

the hyperbolic characters . We will use this terminology even in the extreme

situation, when the two Hχ are one-dimensional.
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Lemma 2.8. Assume symmetry g is quasihomogeneous. Then g is splitting

if and only if Jac(g) /∈ R. In this case, the hyperbolic characters are Jac(g)

and its conjugate.

Proof. According to [24], the rank 2 subspace in the cohomology H2(V?,C)

dual to H+ is spanned by the forms α = dx ∧ dy ∧ dz/dF? and Hess(f)α.

The two forms are eigenvectors of the automorphism g? of H2(V?,C), with

the eigenvalues Jac(g) and its conjugate.

Corollary 2.9. Non-quasihomogeneous exceptional unimodal functions have

no splitting symmetries.

Indeed, a symmetry of such a function preserves the modular term Hess(f).

Hence both α and Hess(f)α are in the same character subspace in the

cohomology.

Our main classificational result, on normal forms of splitting symmetries,

is

Theorem 2.10. Any invariant splitting symmetry g of a quasihomogenous

exceptional unimodal singularity f falls into one of the following categories.

a) The symmetry g of order m > 2 is a power of the Coxeter transforma-

tion C of function f .

b) Each of the corank 2 singularities E14, Z13,W13,W12 admits symme-

tries g of order m > 2 which are powers of the Coxeter transformation

composed with the involution ιz(x, y, z) = (x, y,−z).

c) Remaining symmetries are listed in Table 2.2.

Table 2.2 lists the symmetries up to a choice of a different generator of the

same cyclic group.

The involution ιx used in Table 2.2 has been introduced in Section 2.1.3.

According to Example 2.1, monomials to use in a g-miniversal deformation

in case a) are exactly those of weights divisible by the order m of the sym-

metry g. It is clear that a similar choice in case b) coincides with that for

12



Table 2.2: Exceptional symmetries of Q12 and U12

f g : x, y, z 7→ g = |g| g−miniversal
monomials

notation

Q12 : x2z + y3 + z5 ε9
10x, ωy, ε5z ιxC 30 1 −

ιx : (x, y, z) 7→ ε7
10x, y, ε

3
5z ιxC

3 10 1, y Q12|Z10

7→ (−x, y, z) −x, ω2y, z ιxC
5 6 1, z, z2, z3, z4 Q12|Z6

U12 : x3 + y3 + z4 ω2x, y, iz σC 12 1, y U12|Z12

σ : (x, y, z) 7→ x, ωy,−z σC2 6 1, x, z2, xz2 U12|Z6

7→ (ωx, ω2y, z) ωx, ω2y,−iz σC3 12 1, xy (U12|Z12)′

ω2x, y, z σC4 3 1, z, y, z2, yz, yz2 U12|Z3

U12 : x2y + y3 + z4 ε5
6x, ωy, iz ιxC 12 1 −

ιx : (x, y, z) 7→ ε6x, ω
2y,−z ιxC

2 6 1, z2 (U12|Z6)′

7→ (−x, y, z) −x, y,−iz ιxC
3 4 1, y, x2, xz2 (U12|Z4)′

ε5
6x, ωy, z ιxC

4 6 1, z, z2 (U12|Z3)′

ιx

ιx

σ

Figure 2.2: Symmetries of Dynkin diagrams of Q12 (above) and U12 (below).
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the corresponding power of the Coxeter transformation. For the corank 2

functions not mentioned in part b), the symmetry (x, y, z) 7→ (x, y,−z) is

CN/2.

Theorem 2.10, in particular, states that, for any quasihomogeneous excep-

tional unimodal singularity f , we can make a quasihomogeneous coordinate

change which diagonalises a splitting symmetry. In the case of U12, there are

two possible normal forms. This is similar to the two normal forms of the

D4 singularity.

The sign change in part b) of the Theorem is the−idmap on the vanishing

homology. It does not affect the actual summands in the decomposition (2.2).

It only affects the indexation, changing the signs of all characters.

The transformations ιx and σ in Table 2.2 correspond to the order 2

and 3 symmetries of the Dynkin diagrams of the underlying singularities D6

and D4. The relevant symmetries of the Q12 and U12 Dynkin diagrams are

shown in Figure 2.2 (the diagrams are constructed as those for the direct

sums D6⊕A2 and D4⊕A3 of singularities, using the Gabrielov method [10]).

Both ιx and σ have real determinants, hence are able to split the subspace

H+ only in combination with a power of the Coxeter transformation which

splits H+ itself, that is, has order greater than 2.

2.2.2 Picard-Lefschetz operators

Since the character Jac(g) has a special role, we will use a special notation

χ′ for it. In the direct sum

H2(V?,C) = ⊕χm=1H
χ , (2.3)

where the substitution g? is multiplication by χ on Hχ, we have α = dx ∧
dy ∧ dz/dF? ∈ Hχ′ . Each summand Hχ here is dual to the summand Hχ in

(2.2).

We observe that the subspace Hχ′ is the only summand in (2.3) that

contains a holomorphic nowhere-vanishing 2-form. This helps us to find the

eigenvalues of the Picard-Lefschetz operators acting on Hχ′ .
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Proposition 2.11. Consider the Picard-Lefschetz operator hχ′ on Hχ′ corre-

ponding to a g-orbit of critical points with a quasihomogeneous normal form

ψ(x′, y′, z′). Choose the weights w′1, w
′
2, w

′
3 of the variables so that the weight

of function ψ is 1. Then the eigenvalue of hχ′ is exp(2πi(w′1 + w′2 + w′3)).

Proof. The restriction of the family F to a line germ transversal to Σ may be

brought near any of the critical points to a local normal form ψ(x′, y′, z′) + ε.

Locally, the cohomological operator h? = ⊕hχ is induced by a loop in Cε

going once around the origin in the positive direction. Its eigenvectors are

the 2-forms ωj = αj(x
′, y′, z′) dx′∧dy′∧dz′/dψ, where the αj form a monomial

basis of the local ring of function ψ. The transformation h? is the substitution

x′ := exp(2πiw′1)x′ etc. Hence its eigenvalue on ωj is exp(2πiweight(ωj)),

where weight(ωj) = weight(αj) + w′1 + w′2 + w′3.

The only eigenform ωj that vanishes nowhere in a neighbourhood of our

elementary critical point is the one in which αj is a non-zero constant, that

is, has weight 0.

2.2.3 Dynkin diagrams

Our classification is encoded in the standard way using Dynkin diagrams.

One interpretation of these diagrams gives a description of the structure of

the discriminant Σ ⊂ Λ. Another interpretation we use says that a vertex

corresponds to a generator of π1(Λ \ Σ) (equivalently Mχ), and the edges

correspond to some of the relations. This part of the relations will be denoted

by B. Both interpretations are presented in Table 2.3. While we don’t

necessarily find a two dimensional section of the discriminant in each case,

this interpretation still holds.

The exterior of each vertex is also labelled with the right equivalence class

of the function germ corresponding to this component of the discriminant.

The eigenvalue of the Picard-Lefschetz operator corresponding to the vertex

coincides with the eigenvalue of the classical monodromy of this function

germ, and the order of this is written in the interior of the vertex. This is

the order of the generator of Mχ′ corresponding to this vertex.

We also label the exterior of each vertex with the self-intersection number
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of the vanishing χ-cycle associated to this generator, and edges with the

intersection numbers of neighbouring χ-cycles. The intersection number is

zero if and only if there is no edge between vertices. See page 22, for example.

Table 2.3: Dynkin diagram relations on pairs of vertices

Singularity Dynkin diagram Local structure of Σ B-relations

A1 × A1

s t

st = ts

A2

s t

sts = tst

B2

s t

(st)2 = (ts)2

G2

s t

(st)3 = (ts)3

2.2.4 Equivariant splitting symmetries

Similar considerations can be made in the equivariant case by also considering

constant multiples of the functions itself. We have the following classification

theorem.

Theorem 2.12. Any smoothable equivariant splitting symmetry g of a quasi-

homogeneous exceptional unimodal singularity f falls into one of the following

categories

a) The symmetry g of order m > 2 is a fractional power of the Coxeter

transformation C of function f .

b) Each of the corank 2 singularities E14, Z13,W13,W12 admits symmetries

g of order m > 2 which are fractional powers of the Coxeter transfor-

mation composed with the involution ιz(x, y, z) = (x, y,−z).
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c) Remaining symmetries are powers of C composed with an invariant

symmetry ιx or σ (shown in Figure 2.2) which will be discussed in

detail for Q12 on Page 102 and U12 on Page 117.

2.2.5 Dynkin-like diagrams

For equivariant symmetries, we recall a definition stated in [7]:

Definition 2.13. A group with ` generators acting on Ck is called well

presented if k = `.

By convention, we draw the Dynkin diagram of a group with a ‘curved edge’

if and only if it is not well presented.

Definition 2.14. Such a diagram is called a Dynkin-like diagram, the 3-wise

relations are called braid-like.

In [7] as well as in this thesis we find that the largest observed ` is ` = k+1 (in

the equivariant case only). Such groups may have generators which satisfy

braid-like relations. All such relations necessary for this thesis can be found

in Table 2.4 on Page 18, along with the Dynkin-like diagrams encoding these

relations.

The diagrams given in Chapter 3 correspond to the same groups as those

in Goryunov’s papers, but in some cases may look different. Due to the

amount of labelling frequently required, we introduce a new notation – that

of the intersection diagram. If there is insufficient room to properly label a

Dynkin diagram, it is followed by an intersection diagram containing all nec-

essary information about intersection numbers. These diagrams have black

vertices to distinguish them from Dynkin diagrams.

In Table 2.4 the dotted line is the generic line in the complement to the

discriminant. Generators of the fundamental group of the complement are

loops s, t, u labelled according to the diagrams in the table in the order in

which the loops leave the base point ?. Loops leave ? in an anticlockwise

order and provide a distinguished basis.
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Table 2.4: Dynkin-like diagram relations on triples of vertices
Dynkin diagram Local structure of Σ B-relations

s

u

t

s

u
t

?

stu = tus = ust

t

u

s

s

u
t

?

sutst = utsut, utsu = suts

s

t

u

s

u
t

?

ustut = tustu, stu = tus

2.2.6 Coincidence of weights

Definition 2.15. The graph obtained by removing all labels and orders of

vertices of the Dynkin diagram is the skeleton of the Dynkin diagram.

As in Example 2.1, we take f to be a quasi-homogeneous function of degree N

with respect to the weights w0, . . . , wn of the coordinates where w0, . . . , wn ∈
N, gcd(w0, . . . , wn) = 1. Choose the weights v1, . . . , vk of λ1, . . . , λk in the

unique way so that

Fg = f +
k∑
i=1

λiϕi

is quasi-homogeneous, and assume they are arranged so that vi ≤ vi+1 for all

i = 1, . . . , k − 1.

Similarly, let G be a finite reflection group acting on Ck (as classified

in [21]), basic invariants of which have degrees m1, . . . ,mk also arranged so

that mi ≤ mi+1 for all i = 1, . . . , k − 1. An observation of our classification

is the following.
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Definition 2.16. A group with ` generators acting on a k dimensional vector

space is said to have corank `− k.

Proposition 2.17. Let Mχ′ be a complex hyperbolic reflection group in our

classification, and v1, · · · , vk the weights of the parameters in a corresponding

g-miniversal deformation. Assume the ratio (v1 : · · · : vk) coincides with the

ratio (m1 : · · · : mk) of degrees of basic invariants of a Shephard-Todd group

G. If Mχ and G have equal coranks, then Mχ′ and G have Dynkin diagrams

with coinciding skeletons.

Conversely, coincidence of the skeleton of a Dynkin diagram of Mχ′ with

that of some Shephard-Todd group G implies the equality of the weights ratio

of Mχ′ and the degrees ratio of G.

2.2.7 Discreteness of the monodromy group

We recall the following. Let H be an Hermitian form, and consider an

algebraic number field E such there exists a totally real subfield F with

[E : F ] = 2. Use OE to denote the ring of integers of E. Let SU(H) denote

the special unitary group defined by the form H, and SU(OE, H) ⊂ SU(H)

be the subgroup consisting of matrices with entries belonging to OE. There

are a finite number of embeddings ρi : F → R. For each of these embed-

dings there is, up to complex conjugation, a unique compatible embedding

τi : E → C, from which we obtain a new Hermitian matrix τjH by applying

τj to the entries of H. The new associated group SU(τjH) is denoted by
τjSU(H).

Theorem 2.18 (Deligne, Mostow [9]). The subgroup SU(OE, H) is an arith-

metic lattice in SU(H) if and only if τjSU(H) is compact for all non-trivial

embeddings τj (up to complex conjugation).

Corollary 2.19. The projectivised versions of all groups appearing in the

following classification are discrete subgroups of SU(k − 1, 1).

Proof. For an exceptional unimodal singularity X, the non-symmetric mon-

odromy group M is an infinite subgroup of the unitary group U(µ − 2, 2).
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After taking the quotient of the Milnor fibre by the symmetry group gener-

ated by g the group is the direct sum of groups, each of dimension kχ ≤ k

(by observation).

M =
⊕

χ:χm=1

Mχ.

Due to Lemma 2.8, we assume χ′ 6∈ R. Let χ′ (and therefore its conjugate)

be such that Mχ′ ⊂ U(k− 1, 1). Since the sum of signatures of the character

subspaces must equal the signature of their direct sum, for all χ 6= χ′ (up

to complex conjugation) we have Mχ ⊂ U(kχ), which is compact. After

projectivisation the compactness argument also holds, and moreover entries

in the matrices belong to the cyclotomic ring Z 〈χ〉 . The field Q 〈χ〉 is an

imaginary quadratic extension of the totally real subfield Q 〈χ+ χ〉 since the

minimal polynomial of χ in Q 〈χ+ χ〉 is

x2 − (χ+ χ)x+ 1.

The ring of integers is Z 〈χ〉 ⊂ Q 〈χ〉 , and so all necessary criteria is satisfied.
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Chapter 3

Known results

This chapter gives all results coming from other papers which are used in the

classification in Chapter 4.

3.1 Lifts of simple boundary singularities

We recall all results from [11, 12, 13] relevant to this thesis.

Example 3.1. The boundary singularity A2 has normal form x3 + y0 + z2,

boundary given by {y0 = 0}. We take an m-fold covering of C3 ramified

along the boundary by setting y0 = ym. This is similar to taking a singularity

X 3 x3 + ym + z2 of codimension 2(m− 1), and considering X|Zm with the

symmetry g : (x, y, z) 7→ (x, εmy, z). We consider the picture without the

variable z.

V

0 a

b y0 V̂ y

1

1

χχ

y0 = ym

→

Figure 3.1: Taking m-fold covers of semi-cycles a and b.

This singularity has two χ-cycles â and b̂, lifted from semi-cycles a and b in
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the homology of the Milnor fibre of A2 in the standard way as described in

Section 2.1.4. We use V̂ to denote the boundary cover of the Milnor fibre V by

the substitution y+0 = ym. Figure 3.2 shows that
〈

(1− χ)â, b̂
〉

= m, where

the solid paths are obtained by multiplying the solids paths corresponding

to â in Figure 3.1. The suspension of cycles into an extra dimension by

adding the variable z2 implies self-intersection number −m for both â, b̂. The

intersection form is Hermitian for an odd number of variables, which also

gives for 3 variables 〈
â, b̂
〉

=
m

1− χ
.

1
1

χ

χ

Figure 3.2: Proof that
〈

(1− χ)â, b̂
〉

= m.

The intersection matrix is therefore(
−m − m

χ−1

− m
χ−1

−m

)
,

where χm = 1, χ 6= 1. The function germ representative corresponding to the

only component of the discriminant is of right equivalence class Am−1. The

eigenvalue coming from the classical monodromy of this is of order dividing

m. We want our groups to be hyperbolic, giving the constraint |χ− 1| < 1,

so we must take χ = εm or χ = εm if 6 < m < 13. So we get the following

diagram for A
(m)
2 .

Am−1 Am−1m
εm−1

m m

−m −m

A
(m)
2
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Pairs of connected vertices in the Dynkin diagram for a singularity of type

A
(m)
µ , D

(m)
µ , E

(m)
µ have the same local structure as A

(m)
2 , and the labelling for

each pair is the same as in the diagram above.

An ambiguity occurs when we label cycles with powers of χ (e.g. see

Figure 3.1) since we could start this labelling process on any cycle, and when

we choose orientations. For this reason, the intersection number of the two

cycles is defined only up to multiplication by a power of εm or by ±1. It is

shown in [11] that adding a non-degenerate quadratic form in an even number

of variables to a function affects the intersection numbers only perhaps by

further multiplication by −1. Moreover, if the Dynkin diagram is a tree

this ambiguity affects every edge and we have freedom to choose the most

convenient intersection number.

Oriented edges of Dynkin diagrams indicate the order in which we take

intersection numbers:

a
U→ b,

means 〈a, b〉 = U . However the reorientation

a
U← b

may easily be brought to the form

a
U← b

by the ambiguities mentioned in the previous paragraph. So in the case when

the Dynkin diagram is a tree (specifically this example), we do not assign

orientations to the edges of the diagram.

Example 3.2. Starting with the boundary singularity B2 3 y2
0 ({y0 = 0}

the boundary) and setting y0 = ym, we obtain the singularity B
(2,m)
2 . To

construct its diagram we use an explicit example as in [11]. Consider the

covering y0 = ym of a deformation f(y0) = y2
0 − 4y0 + 3 of the one variable

boundary singularity B2. Set f̂(y) = f(ym). Take f̂ = 0 as the Milnor fibre

V̂ covering f = 0 (see figure 3.3). Join 0 ∈ C by the straight paths with

critical values f̂(0) = 3 and f̂(2) = 1 of f̂ . Take the linear combination of the
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points on the inner circle in Figure 3.3 for a χ−cycle e1 ∈ Hχ ⊂ H0(V̂ ) (the

reduced 0-degree homology) vanishing on the level f̂ = 3, and the difference

between the linear combinations on the outer and inner circles for a χ−cycle

e2 vanishing on f̂ = −1. The intersection matrix (〈ei, ej〉) is(
m −m
−m 2m

)
.

0 1 1
χ
χ

χ−1
χ−1

2π/m

Cz

Figure 3.3: Cycles for B2

The Picard-Lefschetz operator h1 rotates the points on the inner circle anti-

clockwise by 2π/m which means

h1(e1) = χe1,

h1(e2) = e2 + (1− χ)e1

= e1 − (1− χ) 〈e2, e1〉 e1/m

= e1 + (χ− 1)
〈e2, e1〉
〈e1, e1〉

e1.

The operator h2 swaps points on the same ray from the origin:

h2(e1) = e1 + e2

= e1 − 〈e1, e2〉 e2/m

= e1 + (e2πi/2 − 1)
〈e1, e2〉
〈e2, e2〉

e2,

h2(e2) = −e2.

As seen in Figure 3.3, we obtain the Dynkin diagram for B
(m,2)
2 (which is

sometimes written as B
(m)
2 ).
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Am−1 mA1m

m 2

−m −2m

Together with the result for A
(m)
2 , we may now construct Dynkin diagrams

for similar lifts of all simple boundary singularities. In each case there are µ

vertices. Dashed edges in the following diagrams indicate the diagram should

be continued by a chain of vertices.

Am−1 Am−1 Am−1 Am−1 Am−1

m m m m m

m
εm−1

m
εm−1

m
εm−1

−m −m −m −m −m

A
(m)
µ

Am−1

Am−1

Am−1 Am−1 Am−1 Am−1

m

m

m m m m

m
ε8−1

m
εm−1

m
εm−1

m
εm−1

−m

−m

−m −m −m −m

D
(m)
µ

Am−1 Am−1 Am−1

Am−1

Am−1 Am−1

m m m

m

m m

m
εm−1

m
εm−1

m
εm−1

m
εm−1

−m −m −m

−m

−m −m

E
(m)
µ
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Am−1 mA1 mA1 mA1 mA1

m 2 2 2 2

m m m

−m −2m −2m −2m −2m

B
(m)
µ

mA1 Am−1 Am−1 Am−1 Am−1

2 m m m m
m m

εm−1
m

εm−1

−2m −m −m −m −m

C
(m)
µ

Am−1 Am−1 mA1 mA1

m m 2 2

m
εm−1 m m

−6 −3 −6 −6

F
(m)
4

From now on, we will choose the special character χ′, the eigenvalue of g?

on dxdydz
df

, details of which are given in Section 2.2.1, so that the monodromy

group in our case is complex hyperbolic.

3.2 Particular intersection numbers

In [12], a series of invariant singularities

Dm+1|Z2m 3 x2y + ym + z2;

g(x, y, z) = (ε2mx, εmy, z)

was introduced. The self-intersection number of the χ-cycle e corresponding

to this singularity is 〈e, e〉 = m(−2 +χ+χ), χm = −1. In particular, we will

use the following with χ = ε2m:

• For D4|Z6, 〈e, e〉 = 3(−2 + ε6 + ε6) = −3,
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• For D5|Z8, 〈e, e〉 = 4(−2 + ε8 + ε8) = 4
√

2− 8,

• For D6|Z10, 〈e, e〉 = 5(−2 + ε10 + ε10) = 5
2
(
√

5− 3).

We also need the self-intersection number of a χ−cycle e corresponding to a

singularity of type E6|Z12, χ = −iω = ε12. According to [19], this is

〈e, e〉 = −2 · 3 · 4 1− (−1) · ω · i
(1− (−1))(1− ω)(1− i)

= 2
√

3− 6.

3.3 Symmetries of simple singularities

Full details of the following singularities with invariant symmetry are given

in [12], the singularity with equivariant symmetry in [13].

B
(4)
2

For f = x8 + yz ∈ A7 with the invariant symmetry g(x, y, z) = (ix, y, z),

g-versal monomials are 1, x4 and the Dynkin diagram is given.

A3 4A14

4 2

−4 −8

A group with the same notation occurs as a symmetry of D5. Namely, for

f = x2y + y4 + z2 with the invariant symmetry g(x, y, z) = (−ix, y,−z), g-

versal monomials are 1, y2, and the Dynkin diagram is given.

A3 2A12
√

2

4 2

−4 −4

B
(3,3)
2

For f = x3+y4+z2 ∈ E6 with the invariant symmetry g(x, y, z) = (ωx,−y, z),
g-versal monomials are 1, y2 and the Dynkin diagram is given.

A2 2A26
ω−1

3 3

−3 −6
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B
(4,3)
2

For f = x3 + y5 + z2 ∈ E8 with equivariant symmetry g(x, y, z; f) =

(−ωx,−y, iz;−f), g-versal monomials are y, y3 and the Dynkin diagram is

given.

D4 2A26
ω−1

4 3

−6
(

1− ε512
ω−1

)
−6

3.4 Symmetries of P8, X9 and J10

Here we display some of known Dynkin diagrams of groups coming from sym-

metries of P8, X9 and J10 which can be found in [14, 15, 16] respectively. We

fix the character such that these groups are complex crystallographic reflec-

tion groups, and extending these groups in our classification yields complex

hyperbolic reflection groups. We omit some of those groups which are iso-

morphic to ones already mentioned in this chapter.

3.4.1 From P8

The following results come from [14].

C
(3,3)
3

For f = x3 + y3 + yz2 ∈ P8 with the invariant symmetry g(x, y, z) =

(ωx, y,−z), g-versal monomials are 1, y, y2 and the Dynkin diagram is given.

2A2 A2 A2

3 3 3
2(1− ω) 1− ω

−6 −3 −3

(P8|Z6)′

For f = x3 + y3 + yz2 ∈ P8 with the invariant symmetry g(x, y, z) =

(x,wy,−wz), g-versal monomials are 1, x and the Dynkin diagram is given.
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D4 D43
6 6

−3 −3

C
(2,4)
2

For f = x2z + xy2 + z3 ∈ P8 with the invariant symmetry g(x, y, z) =

(−x,−iy, z), g-versal monomials are 1, z, z2 and the Dynkin diagram is given.

2A1 A3 A3

2 4 4
2(1− i) 2(1− i)

−4 −4 −4

P8/Z6

For f = x3 + y3 + z3 ∈ P8 with the equivariant symmetry g(x, y, z; f) =

(−ωx,−y,−z;−1), g-versal monomials are y, z and the Dynkin-like and in-

tersection diagrams are given.

2A2

2A2

2A2

3

3

3

−6

−6

−6

−6

−6

−6

P8/Z4

For f = x2z + xy2 + z3 ∈ P8 with the equivariant symmetry g(x, y, z; f) =

(ix,−y,−iz; if), g-versal monomials are x, yz and the Dynkin-like diagram

is given.
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2A1

4A1

A3

2

2

4

−4

−8

−4

−4(i− 1)

−4

4(i− 1)

3.4.2 From X9

The following results come from [15].

B
(6,3)
2

For f = x4 + xy3 + z2 ∈ X9 with the invariant symmetry g(x, y, z) =

(−x,−ωy, z), g-versal monomials are 1, x2 and the Dynkin diagram is given.

A5 2A26

6 3

−6 −6

X9/Z6

The paper [15] does not use Dynkin-like diagrams, so we perform our own

calculations. For f = x4 + xy3 + z2 ∈ X9 with the equivariant symmetry

g(x, y, z; f) = (ωx, ωy, ωz;ωf). We have

Fg = x4 + xy3 + z2 + γx2y + βy2 + αx

Fg,x = 4x3 + y3 + 2γxy + α

Fg,y = 3xy2 + γx2 + 2βy
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The first two components of the discriminant are Σ1 = {α = 0} and Σ2 =

{27α2+γ3α−16β3−36γβα+8γ2β2−γ4β}. The union Σ1∪Σ2 is a standard B3

type discriminant. The final component Σ3 = {β = 0} gives a line producing

a triple point in a generic section. All other intersections are transversal.

The Dynkin-like and intersection diagrams follow.

3A1 3A1

A3 3A1

2 2

3 2

−6 −6

−3 −6

3

3 3ω u

3ω
u = 3(1− ω)

3.4.3 From J10

The following results come from [16].

J10|Z3

For f = x3 + y6 + z2 ∈ J10 with the invariant symmetry g(x, y, z) =

(ωx, ωy, z), g-versal monomials are 1, y3, xy2 and the Dynkin diagram is

given.

3A1 D4 3A1

2 6 2
3 3

−6 −3 −6
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C
(4)
3

For f = x3+xy4+z2 ∈ J10 with the invariant symmetry g(x, y, z) = (x, iy, z),

g-versal monomials are 1, x, y4 and the Dynkin diagram is given.

4A1 A3 A3

2 4 4
4 4

i−1

−8 −4 −4

J10/Z4

For f = x3 + xy4 + z2 ∈ J10 with the equivariant symmetry g(x, y, z; f) =

(−x,−y, iz;−f), g-versal monomials are y, y3, y5, x, xy2 and the Dynkin-like

diagram is given.

2A1 2A1 2A1 2A1

2A1 2A1

22 2 2

2 2

−4 −4 −4 −4

−4 −4

2 2 2

2 2

2(i+ 1)

u u
u = 2(i− 1)
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Chapter 4

The Classification

In this chapter we list all splitting symmetries of the 14 exceptional unimodal

singularities given in Table 2.1. Each symmetry is presented with an accom-

panying Dynkin (or Dynkin-like) diagram encoding all necessary information

to describe the monodromy subgroup with hyperbolic signature. When con-

sidering a singularity of right equivalence class X with respect to a symmetry

g of order m, we write X|Zm in the invariant case, X/Zm in the equivariant

case, or one of these with dashes to distinguish between symmetries of the

same order with different g-versal deformations. Some lifts of simple singu-

larities are already well known in the literature, for others we may use the

following shortcuts in calculation.

1. If X|Zm → Y |Zm with the same symmetry g then the Dynkin diagram

of Y |Zm is a sub-diagram of some Dynkin diagram of X|Zm. In the

cases Y is one of the parabolic singularities P8, X9, J10, the details can

be found in [14, 15, 16] respectively; if Y is a simple singularity the

details can be found in [11, 12, 13]. All relevant information from these

papers is reproduced in Chapter 3 and specific parts will be referenced

as we proceed.

2. The following may occur. Let X admit an order m symmetry g where

g(zi) = zi. If X also admits an order 2m symmetry g′, defined by

g′(zi) = −zi and g′(zj) = g(zj) such that Fg 6≡ Fg′ , then the Dynkin

diagram for X|Z2m is a folding of the Dynkin diagram for X|Zm in the
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usual sense. For example, take E6 3 f = x4 + y3 + z2 with g = id,

a trivial symmetry, and g′(x, y, z) = (−x, y, z) of order 2. Then the

normal form E6|Z2, i.e. after the substitution x2 = x0, is x2
0 +y3 +z2 ∈

F4. Therefore E6|Z2 = F4, and this is demonstrated visually by folding

the Dynkin diagram. See Figure 4.1.

3. It is not necessary to calculate unknown intersections geometrically.

Say our Dynkin diagram for X|Zm is fully labelled except for an inter-

section number U of two particular cycles. We may write the matrices

of our Picard-Lefschetz operators in terms of U , and observe that these

should satisfy certain braiding relations. These give a condition on

|U |2. We further observe that U ∈ Z 〈χ′〉. We write a general element

of this ring and impose the value of |U |2. This usually gives a system

of diophantine equations with lcm(2,m) solutions which we calculate

by brute force using the MAPLE code given in Section 6.1.

4. In the invariant case, the Milnor number µ of X is preserved as the sum

of multiplicities of singularities corresponding to intersection points of

the discriminant with the generic line. We will refer to this as Σµi = µ

in what follows. A similar equivariant constraint will be discussed later.

↓ ↓

Figure 4.1: Folding the Dynkin diagram of E6 to that of F4.
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Symmetries are given only up to coinciding symmetric versal deformations.

We do not include symmetries of order 2 since by Lemma 2.8 we require the

eigenvalue of g not to be real.

In each case, we assume the symmetry g has the standard form g(x, y, z) =

(ax, by, cz), where a, b, c are to be found. Solving f ◦ g(x, y, z) = f means

solving a system of three equations in a, b, c, written

aαibβicγi = 1, i = 1, 2, 3.

Here α1, β1, γ1 are exponents in the monomial summand xα1yβ1zγ1 of the

singularity. The absolute value of the determinant of the matrix of exponents

∆ =

∣∣∣∣∣∣∣
α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣∣∣∣∣∣∣
gives the number of solutions to this system. If ∆ = N , the order of the

Coxeter element C, then all solutions, and therefore all symmetries, must be

powers of C. If the number of solutions to this system is equal to 2N and

the function germ f ∈ X is stably equivalent to a function of two variables,

then by observation we see that symmetries are powers of C combined with

powers of the involution ιz(x, y, z) = (x, y,−z). Since z does not appear

in the local ring of such a function germ and we are classifying only up to

coinciding deformations we ignore such symmetries, only considering powers

of C.

For each group appearing in this classification the generators have been

entered into a MAPLE worksheet in order to check that the calculations have

been done correctly. Indeed, is has been tested that the generators do in fact

satisfy all relations they are claimed to in this thesis.

4.1 Summary of interesting results

In the sections that follow the invariant and equivariant symmetries are ex-

hausted in detail for each exceptional unimodal singularity. Many of the
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groups appearing have either appeared in other papers or are calculated

through some elementary methods. Since there are many results, we are

isolating some of the most interesting examples and presenting an exposi-

tion of these examples in this section. Displayed next to each singularity is

the page number to find full details, and the ratio of weights of deformation

parameters. Unless explicitly stated otherwise, the ratios found in this sec-

tion have not appeared as weights of basic invariants in the Shepard-Todd

classification [21] for groups of the same corank, nor have the skeletons of

the Dynkin(-like) diagrams appeared as linear complex reflection groups. See

Proposition 2.17. Readers are reminded that groups of corank 0 have Dynkin

diagrams with only straight edges, groups of corank 1 have Dynkin-like dia-

grams with some curved edges, and groups of higher corank do not appear

in this thesis.

E13|Z6, (1 : 2 : 3 : 5), page 47

This singularity is adjacent to a known singularity

E13|Z6 → J10|Z3,

details of which can be found in Section 3.4.3. The figure below display a

generic 2 dimensional section of the discriminant of E13|Z6, and within this

a generic 2 dimensional section of the discriminant of J10|Z3 is boxed.
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−α

β

3A1 D4 3A1 3A1

2 6 2 2
3 3 3

−6 −3 −6 −6

(U12|Z4)′, (1 : 2 : 4 : 6), page 74

We have

(U12|Z4)′ → J10|Z4
∼= C

(4)
3 .

See Section 3.4.3 for details. In the generic 2 dimensional section of (U12|Z4)′

that follows, one component is displayed in bold to distinguish it from the

others. Removing this component, we see a generic 2 dimensional section of

the C
(4)
3 discriminant.
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−α

β

2A1 A3 A3 4A1

2 4 4 2

4
i−1

4
i−1 4

−4 −4 −4 −8

E12/Z4, (1 : 3 : 4 : 6 : 7 : 9), page 82

We have

E12/Z4 → J10/Z4.

See Section 3.4.3. A sabirification of the deformation Fg of E14/Z4 exists

with the zero level set shown below (the bold curve is a smoothening).
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x
↑

y→

2A1 2A1 2A1 2A1 2A1

2A1 2A1

2 22 2 2

2 2

Q10/Z5, (2 : 3), page 85

The ratio (2 : 3) is the same as that of an A2 singularity, but in the Q10/Z5

case the monodromy group Mχ has corank 1. The discriminant is isomorphic

to that of the A2 discriminant with a line through the origin tangent to the

cusp.
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A5

5A1

5A1

5

2

2

The generator in the bottom right of the Dynkin-like diagram is h1, and

travelling clockwise generators are h1, h2, h3. Generators satisfy the relations

h1h3h2h1h2 − h2h1h3h2h1 = 0

h3h2h1h3 − h1h3h2h1 = 0.

These relations and indeed the skeleton of this diagram have been seen in [7]

for the Shephard-Todd group G13. The weights of basic invariants of this

group are also in the ratio (2 : 3).

W12/Z6, (1 : 2 : 4 : 5), page 97

We have

W12/Z6 → X9/Z6.

Details can be found in Section 3.4.2. A generic section of the discriminant

of X9/Z6 has three components: one component isomorphic to that of a

B3 discriminant, two lines intersecting at the origin. It can be seen in the

generic section of the discriminant of W12/Z6 by removing the marked edge

connected two cusps.
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α

β

3A1 3A1 3A1

A3 3A1

2 2 2

3 2

Q12/Z6, (2 : 3 : 4), page 107

We have

Q12/Z6 → P8/Z6,

details of which can be found in Section 3.4.1. The discriminant in the P8

case is just three intersecting lines, which can be seen near the triple point

in the generic section of the discriminant of Q12/Z6.

This ratio (2 : 3 : 4) is the same as the ratio associated with a standard

A3 singularity, the discriminant of which is a swallowtail. In our case the

monodromy group has corank 1 and the swallowtail is intersected with a
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plane. A generic two dimensional section is given. This ratio also coincides

with that of the Shephard-Todd group G(6, 2, 3), the Dynkin-like diagram of

which has the same skeleton. Note that a subdiagram of this is the standard

A
(3)
3 diagram.

2A2 2A2

2A2

2A2

3 3

3

3

Q12/Z4, (2 : 3 : 6), page 109

We have

Q12/Z4 → P8/Z4,

details of which can be found in Section 3.4.1. A section of the Q12/Z4

discriminant is given, but this section is not generic. This is explained fully

in the classification.
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α

β

2 2

2

4

2A1

4A1

A3

4A1

In the diagram, the generator on the far right is h4. Travelling around clock-

wise from here, the generators are h4, h1, h3, h2. The full set of braiding

relations associated to the skeleton of the Dynkin-like diagram is

γ1γ3γ2γ1γ2 = γ2γ1γ3γ2γ1

γ2γ1γ3 = γ3γ2γ1

γ4γ3 = γ3γ4

γ2γ4γ2 = γ4γ2γ4

(γ1γ4)2 = (γ4γ1)2.

4.2 Classification of Invariant Symmetries

4.2.1 E12 3 x3 + y7 + z2

The Coxeter element is C(x, y, z) = (ωx, ε7y,−z). We wish to find all sym-

metries g(x, y, z) = (ax, by, cz). That is, find all solutions to the system of
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equations

a3 = 1

b7 = 1

c2 = 1.

The determinant of the matrix of exponents is

∆ =

∣∣∣∣∣∣∣
3 0 0

0 7 0

0 0 2

∣∣∣∣∣∣∣ = 42.

Since ∆ = N, all symmetries are powers of the Coxeter element.

f g = |g| versal monomials notation

x3 + y7 + z2 ∈ E12 C,C2 42, 21 1 -

C3, C6 14, 7 1, x E12|Z7

C7, C14 6, 3 1, y, y2, y3, y4, y5 E12|Z3

These singularities have already been seen in Section 3.1:

E12|Z7
∼= A

(7)
2

E12|Z3
∼= A

(3)
6 ,

immediately giving us the Dynkin diagrams below.

E12|Z7

A6 A67
ε7−1

7 7

−7 −7

E12|Z3

A2 A2 A2 A2 A2 A2

3 3 3 3 3 3

3
ω−1

3
ω−1

3
ω−1

3
ω−1

3
ω−1

−3 −3 −3 −3 −3 −3
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4.2.2 Z11 3 x3y + y5 + z2

The Coxeter element is C(x, y, z) = (ε4
15x, ε5y,−z). A general invariant

symmetry is g(x, y, z) = (ax, by, cz), where a, b, c satisfy

a3b = 1

b5 = 1

c2 = 1.

The determinant of the matrix of exponents is

∆ =

∣∣∣∣∣∣∣
3 1 0

0 5 0

0 0 2

∣∣∣∣∣∣∣ = 30.

Since ∆ = N , all invariant symmetries are powers of C.

f g = |g| versal monomials notation
x3y + y5 + z2 ∈ Z11 C,C2 30, 15 1 -

C3, C6 10, 5 1, xy2 Z11|Z10

C5, C10 6, 3 1, y, y2, y3, y4 Z11|Z6

Z11|Z10

For Z11|Z10, we have

Fg = x3y + y5 + z2 + βxy2 + α

Fg,x = 3x2y + βy2

Fg,y = x3 + 5y4 + 2βxy.

For α = 0, Fg has a normal form

Fg|α=0 ∼ xy2 + x5 + z2,

which has a D6 singularity at the origin. The intersection number has been

given in Section 3.2, where the symmetry differs only by the permutation
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of the variables x and y. Milnor numbers must satisfy Σµi = µ. Since the

Milnor number of the singularity Z11 is 11 and the contribution from the

α = 0 component is 6, then the α 6= 0 component must contribute a total

Milnor number of 5. Critical point on this component have x = 0 and y

the root of a degree 5 polynomial. This means the critical points on this

component occur with multiplicity 5, and this singularity is therefore 5A1.

D6 5A1U
10 2

5
2(
√

5− 3) −10

Let h1, h2 denote the Picard-Lefschetz operators. These satisfy (h1h2)3 =

(h2h1)3, giving the relation

|U |2 = 25.

We know that U ∈ Z 〈ε5〉 . Since |U |2 is itself a square, we take U = 5,

giving the following Dynkin diagram. Moreover, each of the 5 Morse cycles

corresponding to 5A1 intersects the D6 cycle at isolated points.

D6 5A15
10 2

5
2(
√

5− 3) −10

Z11|Z6

The singularity Z11|Z6 can be identified as

Z11|Z6
∼= C

(3)
5 ,

as seen in Section 3.1. Hence the diagram:

3A1 A2 A2 A2 A2

2 3 3 3 3
3 3

ω−1
3

ω−1
3

ω−1

−6 −3 −3 −3 −3
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4.2.3 E13 3 x3 + xy5 + z2

The Coxeter element is C(x, y, z) = (ωx, ε2
15y,−z).

f g : x, y, z 7→ |g| versal monomials notation

x3 + xy5 + z2 ∈ E13 C,C2 30, 15 1 -

C3, C6 10, 5 1, x, y5 E13|Z10

C5, C10 6, 3 1, y3, y6, xy2 E13|Z6

E13|Z10

The singularity E13|Z10 may be identified as

E13|Z10
∼= C

(5)
3 ,

by the boundary substitution y0 = y5. This gives the Dynkin diagram below.

All information required to label the subdiagrams B
(5)
2 and A

(5)
2 is contained

in Section 3.1.

5A1 A4 A4

2 5 5
5

5
ε5−1

−10 −5 −5

E13|Z6

For E13|Z6 we have

Fg = x3 + xy5 + z2 + δxy2 + γy6 + βy3 + α

Fg,x = 3x2 + y5 + δy2

Fg,y = 5xy4 + 2δxy + 6γy5 + 3βy2.

If y = 0 at a critical point, we find also that x = 0 giving the discriminant

component with equation Σ1 = {α = 0}. The normal form of a function

germ corresponding to this component is

Fg|α=0 ∼ x3 + y3 + z2,
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a critical point of type D4. If y 6= 0 at a critical point, we may eliminate x,

y and z from the above system of equations to get the following equation for

the other component of the discriminant.

Σ2 = {−13500βγ2α2 + 729β4δγ + 729β4γ3 + 16δ6γ3 − 216δ3β3

−16d6β + 16δ7γ + 3125α3 − 729β5 + 216δ4β2γ + 216δ3β2γ3

+4125δ2γα2 − 5625δβα2 − 5832β2γ4α + 6075β3γα

+2700δ2β2α + 864δ3γ4α + 888δ4γ2α + 16200γ3δα2 − 5670β2γ2δα

−2592δ2βγ3α− 3420δ3βγα + 11664γ5α2 + 16δ5α = 0}.

Critical points on this component have multiplicity 3 by considering the

symmetry g, and a generic line in the discriminant intersects this component

at 3 points. So these critical point must be of type 3A1 to satisfy Σµi = µ.

A generic section of the discriminant is given below, taken with sufficiently

large γ = δ < 0.

Σ1

Σ2 −α

β

4

3

2
1

?
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The majority of the Dynkin diagram for this singularity can be computed

using the adjacency

E13|Z6 → J10|Z3,

details of which can be found in Section 3.4.3. A generic 2 dimensional section

of the discriminant of J10|Z3 is boxed in the above figure.

3A1 D4 3A1 3A1

2 6 2 2
3 3 3

−6 −3 −6 −6

Name the generators h3, h2, h4, h1 from left to right, where hi denotes the

Picard-Lefschetz operator induced by a loop in a generic line (dashed in the

diagram) going around the intersection labelled i with the discriminant.The

numbering is the order in which we loop around in the discriminant in the

line from the base point ? in the anticlockwise direction. The generators

h2, h3, h4 generate the group coming from J10|Z3. The final generator h1

commutes with h2 and h3, and from the generic section of the discriminant

we see that it satisfies h1h4h1 = h4h1h4. The subdiagram for h1, h4 is that of

3A2, so the intersection number between the cycles must be 3 according to

Section 3.2.

4.2.4 Q10 3 x2z + y3 + z4

The Coxeter element is C(x, y, z) = (ε3
8x, ωy, iz).

f g = |g| versal monomials notation

x2z + y3 + z4 ∈ Q10 C 24 1 -

C2 12 1, z2 Q10|Z12

C3 8 1, y Q10|Z8

C4 6 1, z, z2, z3 Q10|Z6

C6 4 1, y, z2, yz2 Q10|Z4

C8 3 1, z, x, z2, z3 Q10|Z3
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Q10|Z12

For Q10|Z12 we have

Fg = x2z + y3 + z4 + βz2 + α

Fg,x = 2xz

Fg,y = 3y2

Fg,z = x2 + 4z3 + 2βz.

So y = 0 at a critical point. Assuming also that z = 0, we deduce α = 0.

The normal form of a function germ on this component is

Fg|α=0 ∼ x4 + y3 + z2,

a critical point of type E6, the self intersection number of such a cycle being

described in Section 3.2. On the other hand, if z 6= 0 we find that x = 0, and

singularities occur with multiplicity 2. To satisify Σµi = µ this singularity

must be 2A2.

2A2 E6U

3 12

−6 2
√

3− 6

Let h1, h2 denote the Picard-Lefschetz operators. Since the generators satisfy

(h1h2)2 = (h2h1)2, we calculate that |U |2 = 24. We know also that U ∈
Z 〈ε12〉, and so must be of the form

U = k1ε12 + k2ε12 + k3ε6 + k4ε6.

The square of the modulus of this general element is given by

|U |2 = k2
1 + k2

2 + k2
3 + k2

4 + k1k2 − k3k4 + (k1k3 + k2k4)
√

3.
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Equating rational and irrational parts we find two conditions on our con-

stants:

k2
1 + k2

2 + k2
3 + k2

4 + k1k2 − k3k4 = 24

k1k3 + k2k4 = 0.

Putting these conditions into the computer program, we find there are twelve

solutions for the integers ki. One such solution is

k1 = k2 = k3 = −k4 = 2

corresponding to

U = 2
√

3(1 + i).

Other solutions are of the form εk12U and correspond to the ambiguity in

construction of the E6 cycle. We complete our Dynkin diagram.

2A2 E62
√

3(1 + i)

3 12

−6 2
√

3− 6

Q10|Z8

For Q10|Z8 we have

Fg = x2z + y3 + z4 + βy + α

Fg,x = 2xz

Fg,y = 3y2 + β

Fg,z = x2 + 4z3

We see from Fg,x = 0 that either x = 0 or z = 0. Further, Fg,z says that x = 0

if and only if z = 0, so we must have x = z = 0. This leaves an expression in

y corresponding to a discriminant of type A2. The discriminant component

corresponds to a singularity of Fg of type D5, which can be observed by con-

sidering monomials only involving x and z in the deformation. The Dynkin

diagram starts to take shape.
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D5 D5U
8 8

4
√

2− 8 4
√

2− 8

Self intersection numbers shown have been stated in Section 3.2. Let h1, h2

denote the Picard-Lefschetz operators. Since we know that h1h2h1 = h2h1h2,

we can calculate that |U |2 = 32− 16
√

2. Since U ∈ Z 〈ε8〉 , it must be of the

form

U = k1 + k2i+ k3ε8 + k4ε8.

The square of the modulus of this general element is

|U |2 = k2
1 + k2

2 + k2
3 + k2

4 + (k1k3 + k1k4 + k2k3 − k2k4)
√

2.

Equating rational and irrational parts we find two conditions on our con-

stants:

k2
1 + k2

2 + k2
3 + k2

4 = 32

k1k3 + k1k4 + k2k3 − k2k4 = −16.

One of the 8 solutions to these equations is

k1 = −k3 = 4, k2 = k4 = 0,

corresponding to

U = 4(1− ε8).

Other solutions are εk8U , and we recall the ambiguity that a vanishing χ-cycle

may be chosen up to multiplication by powers of χ. We complete our Dynkin

diagram.

D5 D54(1− ε8)

8 8

4
√

2− 8 4
√

2− 8

Q10|Z3

The singularity Q10|Z3
∼= D

(3)
5 by the boundary substitution y0 = y3 in the

normal form f ∈ Q10.
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A2

A2

A2 A2 A2

3

3

3 3 3

3
ω−1

3
ω−1

3
ω−1

3
ω−1

−3

−3

−3 −3 −3

Q10|Z6

The singularity Q10|Z6 is a folding of the above singularity Q10|Z3, similar to

getting the Dynkin diagram for C4 from that of D5, and can also be found

by considering the adjacency Q10|Z6 → C
(3,3)
3 , which appears as a symmetry

of P8. For details see Section 3.4.1.

2A2 A2 A2 A2

3 3 3 3

6
ω−1

3
ω−1

3
ω−1

−6 −3 −3 −3

Q10|Z4

For Q10|Z4 we have

Fg = x2z + y3 + z4 + δyz2 + γz2 + βy + α

Fg,x = 2xz

Fg,y = 3y2 + δy2 + β

Fg,z = x2 + 4z3 + 2δyz + 2γz.

At any critical point x = 0. This leaves a deformation of f |x=0 = y3 + z4

which immediately gives us a discriminant of type F4. We use the adjacency

Q10|Z4 → D5|Z4
∼= B

(4)
2 , details of which are given in [12]. Intersection

numbers can be read from Section 3.1. The diagram for B
(4)
2 is extended

uniquely to the diagram for Q10|Z4.

A3 A3 2A1 2A1

4 4 2 2

4
i−1 2

√
2 −2

−4 −4 −4 −4
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4.2.5 E14 3 x3 + y8 + z2

The Coxeter element is C(x, y, z) = (ωx, ε8y,−z).

f g = |g| versal monomials notation

x3 + y8 + z2 ∈ E14 C 24 1 -

C2 12 1, y4 E14|Z12

C3 8 1, x E14|Z8

C4 6 1, y2, y4, y6 E14|Z6

C6 4 1, x, y4, xy4 E14|Z4

C8 3 1, y, y2, y3, y4, y5, y6 E14|Z3

E14|Z12

For E14|Z12 we have

Fg = x3 + y8 + z2 + βy4 + α

Fg,x = 3x2

Fg,y = 8y7 + 4βy3.

By considering the variable y we see the discriminant is of type B2. For the

component with equation α = 0, the deformation has normal form

Fg|α=0 ∼ x3 + y4 + z2,

a singularity of type E6. On the remaining component, singularities occur

with multiplicity 4. To satisfy Σµi = µ, singularities corresponding to this

component must be of type 4A2.

E6 4A2U

12 3

2
√

3− 6 −12

The self-intersection numbers are given in Section 3.2. Let h1, h2 denote

the Picard-Lefschetz operators. The braiding relation on the generators

54



(h1h2)2 = (h2h1)2 gives the condition that |U |2 = 48. Using the fact that

U ∈ Z 〈ε12〉 , U must have the form

U = k1ε12 + k2ε12 + k3ε6 + k4ε6,

where the coefficients satisfy the relations

k2
1 + k2

2 + k2
3 + k2

4 + k1k2 − k3k4 = 48

k1k3 + k2k4 = 0.

One solution is

k1 = k2 = 0, k3 = 8, k4 = 4,

corresponding to

U = 4(1 + ε6).

All other solutions are εk12U, reflecting the ambiguity in the choice of the E6

cycle. We complete our Dynkin diagram.

E6 4A24(1 + ε6)

12 3

2
√

3− 6 −12

E14|Z8

The singularity E14|Z8
∼= A

(8)
2 by the boundary substitution y0 = y8 in the

normal form f ∈ E14. For details see Section 3.1.

A7 A78
ε8−1

8 8

−8 −8

E14|Z3

The singularity E14|Z3
∼= A

(3)
7 → E12|Z3

∼= A
(3)
6 , so we construct the Dynkin

diagram.
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A2 A2 A2 A2 A2 A2 A2

3 3 3 3 3 3 3

3
ω−1

3
ω−1

3
ω−1

3
ω−1

3
ω−1

3
ω−1

−3 −3 −3 −3 −3 −3 −3

E14|Z6

The singularity E14|Z6 is a folding of E14|Z3. We also note the adjacency

E14|Z6 → E6|Z6
∼= B

(3,3)
2 , which can be seen as a subdiagram. Details of the

latter can be found in Section 3.3.

A2 2A2 2A2 2A2

3 3 3 3

6
ω−1

6
ω−1

6
ω−1

−3 −6 −6 −6

E14|Z4

The singularity E14|Z4
∼= F

(4)
4 by the boundary substitution y0 = y4 in the

normal form f ∈ E14. We have an adjacency E14|Z4 → A7|Z4
∼= B

(4)
2 , details

of which can be found in Section 3.3 giving the B2 type subdiagram and we

extend it in the unique way by adding simple edges.

A3 A3 4A1 4A1

4 4 2 2

4
i−1 4 −4

−4 −4 −8 −8

4.2.6 Z12 3 x3y + xy4 + z2

The Coxeter element is C = (ε11x, ε
8
11y,−z). All splitting symmetries of this

singularity have one parameter g-versal deformations.

f g : x, y, z 7→ |g| versal monomials notation

x3y + xy4 + z2 ∈ Z12 C 22 1 -
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4.2.7 W12 3 x4 + y5 + z2

The Coxeter element is C(x, y, z) = (ix, ε5y,−z). All symmetries given by

powers of C are included in the table below. Since ∆ = 40 = 2N, we

have other symmetries which are powers of C composed with ιz(x, y, z) =

(x, y,−z). Since the singularity is stably equivalent to a function of two vari-

ables and the involution ιz affects only the third variable, these are omitted

from the table.

f g = |g| versal monomials notation

x4 + y5 + z2 ∈ W12 C 20 1 -

C2 10 1, x2 W12|Z10

C4 5 1, x, x2 W12|Z5

C5 4 1, y, y2, y3 W12|Z4

W12|Z5

The singularity W12|Z5
∼= A

(5)
3 by the boundary substitution y0 = y5 in the

normal form f ∈ W12.

A4 A4 A4

5 5 5

5
ε5−1

5
ε5−1

−5 −5 −5

W12|Z10

The singularity W12|Z10 is a folding of W12|Z5 by the involution ιx(x, y, z) =

(−x, y, z).

A4 2A4
10
ε5−1

5 5

−5 −10

W12|Z4

The singularity W12|Z4
∼= A

(4)
4 by the boundary substitution x0 = x4 in the

normal form f ∈ W12.

A3 A3 A3 A3

4 4 4 4

4
i−1

4
i−1

4
i−1

−4 −4 −4 −4
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4.2.8 Q11 3 x2z + y3 + yz3

The Coxeter element is C(x, y, z) = (ε7
18x, ωy, ε

2
9z).

f g = |g| versal monomials notation

x2z + y3 + yz3 ∈ Q11 C 18 1 -

C2 9 1 -

C3, C6 6 1, y, z3 Q11|Z6

Q11|Z6

We note the adjacency Q11|Z6 → (P8|Z6)′, details of which are found in

Section 3.4.1. Therefore the Dynkin diagram contains a subdiagram of the

form A
(6)
2 , in which vertices correspond to singularities of type D4.

For Q11|Z6 we have

Fg = x2z + y3 + yz3 + γz3 + βy + α

Fg,x = 2xz

Fg,y = 3y2 + z3 + β

Fg,z = x2 + 3yz2 + 3γz2

For z 6= 0, we find that x = 0, y = −γ and z satisfies z3 + β + 3γ2 at

zero level critical points. These correspond to singularities of type 3A1,

since we already know two singularities with combined Milnor number 8,

the total Milnor number must be 11, and z satisfies a cubic equation. The

discriminantal component corresponding to this has equation

Σ1 = {α− βγ − γ3 = 0}.

This is a smooth surface. We denote this component by Σ1.

For z = 0, we find that x = 0, and γ is eliminated leaving us just to con-

sider the variable y with parameters α, β satisfying an A2 type discriminant

relation, the cuspidal edge

Σ1 = {4β3 + 27α2 = 0}.
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We consider the images Σ′1 and Σ′2 under the diffeomorphism

α 7→ α + βγ + γ3

β 7→ β

γ 7→ γ,

giving

Σ′1 = {α = 0},

Σ′2 = {4β3 + 27α2 + 54αβγ + 54αγ3 + 27γ2β2 + 54γ4β + 27γ6 = 0}

as the new equations of the discriminant. This is diffeomorphic to the C3

type discriminant. The left two-vertex diagram comes from a symmetry of

E7 which was missed in [12].

3A1 D4 D4

2 6 6
3 3

−6 −3 −3

4.2.9 Z13 3 x3y + y6 + z2

The Coxeter element is C(x, y, z) = (ε5
18x, ε6y,−z). We have ∆ = 36 = 2N .

All symmetries coming powers of C are included in the table below. All other

symmetries are powers of C composed with ιz(x, y, z) = (x, y,−z), and these

are omitted.

f g = |g| versal monomials notation

x3y + y6 + z2 ∈ Z13 C 18 1 -

C2 9 1, y3 Z13|Z9

C3 6 1, y2, y4 Z13|Z6

C6 3 1, y, y2, y3, y4, y5 Z13|Z3
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Z13|Z9

For Z13|Z9 we have

Fg = x3y + y6 + z2 + βy3 + α

Fg,x = 3x2y

Fg,y = x3 + 6y5 + 3βy2.

The discriminant is easily seen to be of the B2 type:

• its component α = 0 corresponds to a singularity E7 at the origin

Fg|α=0 ∼ x3y + y3 + z2;

• and the component β2 − 4α = 0 is a 3A2 stratum.

In the latter case, each of the three A2 singularities is Z3 symmetric with

respect to g3(x, y, z) = (ωx, y, z) and has normal form x̃3 + ỹ2 + z̃2.

We take for a function corresponding to a generic marked point ? in the

base of g-versal deformation

F? = x3y + (y3 − 1)(y3 − 8) + z2.

The curve F?|z=0 = 0 is a 3-cover of Cy with order 3 branching points at

y3 = 1, y3 = 8, and with a puncture at the origin. It retracts onto the

following configuration, with the nodes at the branching points.
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Cx,y

In the 2 variable case, the vanishing E7 χ-cycle is a linear combination of

the 9 intervals along the circle and the 3A2 vanishing χ-cycle is a linear

combination of the 9 others. The 3 variable case is a suspension of this. In

particular, the self-intersection of the 3A2 χ-cycle is 3×(−3) = −9. Similarly,

the self-intersection of each triple part of the 3 variable E7 χ-cycle is −3. The

rest of the intersection information about the two vanishing χ-cycles may be

derived from the intersections at the branching point y = 1. So we consider

the events over the arcs and interval in the picture below.
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Cy

I

II

III

The orientations at y = 1 of the corresponding summands of the E7 and 3A2

χ′-cycles are as follows.

Cx

1

w

ε2
9ε5

9

ω

ε8
9

1
ω

ω
Cz

We calculate the intersection numbers at y = 1.

〈II, III〉 = 3
ε79

1−ω 〈I, II〉 = −3 ω
1−ω

〈III, II〉 = −3
ε59

1−ω 〈I, III〉 = 3 ε9
1−ω .
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Taking appropriate sums of these numbers, we complete the Dynkin diagram.

E7 3A2

18 3

−9ω−ε91−ω

−9
(

1 +
ε59−ε79
1−ω

)
−9

Z13|Z6

For Z13|Z6 we have

Fg = x3y + y6 + z2 + γy4 + βy2 + α

Fg,x = 3x2y

Fg,y = x3 + 6y5 + 4γy3 + 2βy

.

If α = 0 we have the normal form

Fg|α=0 ∼ x6 + y2 + z2,

a singularity of type A5.

When α 6= 0 we find that x = 0. By considering the variable y we see

that the discriminant is of type C3, and singularities corresponding to the

α 6= 0 component of the discriminant occur with multiplicity 2. To satisfy

Σµi = µ these must be of type 2A2.

We notice the adjacency

Z13|Z6 → X9|Z6
∼= B

(6,3)
3 ,

which appears as a subdiagram of the Dynkin diagram.

A5 2A2 2A2

6 3 3
6 6

ω−1

−6 −6 −6

Z13|Z3

The singularity Z13|Z3
∼= C

(2,3)
6 by the boundary substitution x0 = x3 in the

normal form f ∈ Z13.

63



3A1 A2 A2 A2 A2 A2

2 3 3 3 3 3
3 3

ω−1
3

ω−1
3

ω−1
3

ω−1

−6 −3 −3 −3 −3 −3

4.2.10 S11 3 x2z + yz2 + y4

The Coxeter element is C(x, y, z) = (ε5
16x, iy, ε

3
8z). Since ∆ = 16 = N, all

symmetries are powers of C.

f g = |g| versal monomials notation

x2z + yz2 + y4 ∈ S11 C 16 1 -

C2 8 1, y2 S11|Z8

C4 4 1, y, y2, z2 S11|Z4

S11|Z8

For S11|Z8 we have

Fg = x2z + yz2 + y4 + βy2 + α

Fg,x = 2xz

Fg,y = z2 + 4y3 + 2βy

Fg,z = x2 + 2yz.

The conditions Fg,x = 0 and Fg,z = 0 together imply that x = 0 at any

zero-level critical point of the deformation. If y = 0, then z = 0 and α = 0

gives the first component of the discriminant. This component corresponds

to critical points of type D5 (see Section 3.2). If y 6= 0, then from Fg,z we

must have z = 0. We are left with the conditions

y4 + βy2 + α = 0

4y2 + 2β = 0,

giving us the usual B2 discriminant. Singularities of the deformation corre-

sponding to the latter component of the discriminant are of type A3 with

multiplicity 2. We may start to construct the Dynkin diagram.
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D5 2A3U

8 4

4
√

2− 8 −8

Using the relation (h1h2)2 = (h2h1)2 we get the condition that |U |2 = 32.

Similar calculations as in Q10|Z8 show that we may take

U = 4(1 + i).

We may finish labelling our Dynkin diagram.

D5 2A34(1 + i)

8 4

4
√

2− 8 −8

S11|Z4

The ratio of degrees of the deformation parameters of S11|Z4 coincides with

that of C4. Comparing the discriminants we can see that the unlabelled

Dynkin diagrams also coincide. By noticing the adjacency S11|Z4 → P8|Z4
∼=

C
(4)
3 (see Section 3.4.1), we may construct our Dynkin diagram.

2A1 A3 A3 A3

2 4 4 4

4
i−1

4
i−1

4
i−1

−4 −4 −4 −4

4.2.11 W13 3 x4 + xy4 + z2

The Coxeter element is C(x, y, z) = (ix, ε3
16y,−z). All symmetries given by

powers of C are included in the table below, and powers of C composed with

ιz(x, y, z) = (x, y,−z) are omitted for standard reasons.

f g = |g| versal monomials notation

x4 + xy4 + z2 ∈ W13 C 16 1 -

C2 8 1, x2 W13|Z8

C4 4 1, x, x2, y4 W13|Z4
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W13|Z8

For W13|Z8 we have

Fg = x4 + xy4 + z2 + βx2 + α

Fg,x = 4x3 + y4 + 2βx

Fg,y = 4xy3.

If x = 0, then y = 0 and we get a component of the discriminant with α = 0.

Singularities of the deformation corresponding to this component are type

A7. If x 6= 0 we still find that y = 0, and we get the conditions

x4 + βx2 + α = 0

4x2 + 2β = 0,

giving the usual B2 type discriminant. Singularities of the deformation cor-

responding to the latter component of the discriminant are of type A3 and

of multiplicity 2. The self-intersection numbers are given in Section 3.2. The

Dynkin diagram is given.

A7 2A3U

8 4

−8 −8

With the relation (h1h2)2 = (h2h1)2 on the generators h1, h2 and the fact

that U ∈ Z 〈ε8〉 , we use standard calculations to find U = 4(1 + i)(1 + ε8)

and we complete our diagram.

W13|Z4

The singularity W13|Z4
∼= C

(4)
4 by the boundary substitution y0 = y4 in the

normal form f ∈ W13.

4A1 A3 A3 A3

2 4 4 4
4 4

i−1
4
i−1

−8 −4 −4 −4
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4.2.12 Q12 3 x2z + y3 + z5

The Coxeter element is C(x, y, z) = (ε2
5x, ωy, ε5z). If g is of the standard

form g(x, y, z) = (ax, by, cz), then the numbers a, b, c satisfy

a2c = b3 = c5 = 1.

This system of equations has 2N = 30 solutions. Symmetries are compositions

of powers of the classical monodromy with the involution

ιx(x, y, z) = (−x, y, z),

which corresponds to a symmetry of the Dynkin diagram of Q12 shown in

Figure 4.2.

ιx

Figure 4.2: Dynkin diagram for Q12

f g = |g| versal monomials notation

x2z + y3 + z5 ∈ Q12 C, ιxC 15, 30 1 -

C3, ιxC
3 5, 10 1, y Q12|Z10

ιxC
5 6 1, z, z2, z3, z4 Q12|Z6

C5 3 1, z, x, z2, z3, z4 Q12|Z3
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Q12|Z10

For Q12|Z10 we have

Fg = x2z + y3 + z5 + βy + α

Fg,x = 2xz

Fg,y = 3y2 + β

Fg,z = x2 + 5z4.

We find that at any zero-level critical point of Fg we have x = z = 0. We

then have the system of equations

y3 + βy + α = 0

3y2 + β = 0.

Eliminating y gives the equation for the only component of the discriminant:

(α
2

)2

=

(
−β
3

)3

,

a standard A2 type discriminant. The deformation Fg has singularities of

type D6 at discriminant points. The necessary self-intersection numbers have

been described in Section 3.2. We begin to construct the Dynkin diagram.

D6 D6U
10 10

5
2(
√

5− 3) 5
2(
√

5− 3)

Using the relation h1h2h1 = h2h1h2 we get the condition |U |2 = 25. Since

this is already a square number, we may take U = 5.

D6 D65
10 10

5
2(
√

5− 3) 5
2(
√

5− 3)

Q12|Z3

We can identify Q12|Z3 ∼ D
(3)
6 by the boundary substitution y0 = y3 in the

normal form f ∈ Q12. This is consistent with the adjacency Q12|Z3 → Q10|Z3.
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A2

A2

A2 A2 A2 A2

3

3

3 3 3 3

3
ω−1

3
ω−1

3
ω−1

3
ω−1

3
ω−1

−3

−3

−3 −3 −3 −3

Q12|Z6

The singularity Q6|Z6 is a folding of the above singularity Q12|Z6. This is

also consistent with the adjacency Q12|Z6 → Q10|Z6. See Page 53.

2A2 A2 A2 A2 A2

3 3 3 3 3

6
ω−1

3
ω−1

3
ω−1

3
ω−1

−6 −3 −3 −3 −3

4.2.13 S12 3 x2z + yz2 + xy3

The Coxeter element is C(x, y, z) = (ε13x, ε
4
13y, ε

11
13z). Since ∆ = 13 = N is

prime, all splitting symmetries of this singularity have one parameter g-versal

deformations.

f g = |g| versal monomials notation

x2z + yz2 + xy3 ∈ S12 C 13 1 -

4.2.14 U12 3 x3 + y3 + z4

The Coxeter element is C(x, y, z) = (ωx, ωy, iz). The numbers a, b, c satisfy

a3 = b3 = c4 = 1,

so we have

∆ =

∣∣∣∣∣∣∣
3 0 0

0 3 0

0 0 4

∣∣∣∣∣∣∣ = 36 = 3N.
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Symmetries are compositions of powers of the Coxeter element with the map

σ(x, y, z) = (ωx, ω2y, z),

corresponding to a symmetry of the Dynkin diagram of U12 as shown in

Figure 4.3.

ιx

σ

Figure 4.3: Dynkin diagram for U12

f g = |g| versal monomials notation

x3 + y3 + z4 ∈ U12 σC 12 1, y U12|Z12

C 12 1 -

σC2 6 1, y, z2, yz2 U12|Z6

C2 6 1, z2 (U12|Z6)′

σC3 12 1, xy (U12|Z12)′

C3 4 1, x, y, xy U12|Z4

σC4 3 1, z, y, z2, yz, yz2 U12|Z3

C4 3 1, z, z2 (U12|Z3)′
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U12|Z12

For U12|Z12 we have

Fg = x3 + y3 + z4 + βy + α

Fg,x = 3x2

Fg,y = 3y2 + β

Fg,z = 4z3,

giving x = z = 0 at any zero-level critical point of Fg. If we eliminate y from

the remaining system of equations, we get a standard A2 type discriminant,

where points on the discriminant correspond to singularities of Fg of type

E6. Self-intersection numbers have been described in Section 3.2. We begin

to construct the Dynkin diagram.

E6 E6U
12 12

2
√

3− 6 2
√

3− 6

Using the relation h1h2h1 = h2h1h2, we find |U |2 = 24. Standard calculations

show that we may take U = 2
√

3(1 + i).

E6 E62
√

3(1 + i)
12 12

2
√

3− 6 2
√

3− 6

U12|Z4

The singularity U12|Z4
∼= D

(4)
4 by the boundary substitution z0 = z4 in the

normal form f ∈ U12.

A3

A3

A3 A3

4

4

4 4

4
i−1

4
i−1

4
i−1

−4

−4

−4 −4
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(U12|Z12)′

The singularity (U12|Z12)′ is an order 3 folding of U12|Z4, analogous to the

folding of D4 to G2.

A3 3A3
12
i−1

4 4

−4 −12

U12|Z3

The singularity U12|Z3
∼= E

(3)
6 by the boundary substitution x0 = x3 in the

normal form f ∈ U12.

A2 A2 A2

A2

A2 A2

3 3 3

3

3 3

3
ω−1

3
ω−1

3
ω−1

3
ω−1

3
ω−1

−3 −3 −3

−3

−3 −3

U12|Z6

The singularity U12|Z6 is a folding of U12|Z3.

A2 A2 2A2 2A2

3 3 3 3

3
ω−1

6
ω−1

6
ω−1

−3 −3 −6 −6

(U12|Z3)′

For the singularity (U12|Z3)′, we notice that the deformation monomials in-

volve only the variable z, indicating that x = y = 0 at any component of

the discriminant. The remaining system of equations involving z gives the

standard A3 swallowtail discriminant, with singularities of Fg of type D4 at

generic points of the discriminant. We find intersection numbers by using

the adjacency (U12|Z3)′ → (P8|Z6)′. For details see Section 3.4.1.
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D4 D4 D4

6 6 6
3 3

−3 −3 −3

(U12|Z6)′

The singularity (U12|Z6)′ is a simple folding of (U12|Z6)′, analogous to the

folding of A3 to B2.

D4 2D46
6 6

−3 −6

4.2.15 U12 3 x2y + y3 + z4

The singularity U12 has two normal forms. Considering symmetries on the

normal forms separately we get distinct results. All symmetries are described

in the table, but only the monodromy group (U12|Z4)′ has not appeared in

the previous section.

As before, the Coxeter element is C(x, y, z) = (ωx, ωy, iz). The numbers

a, b, c must satisfy

a2b = b3 = c4 = 1.

This system of equations has 2N = 24 solutions. Symmetries are composi-

tions of powers of the classical monodromy with the involution

ιx(x, y, z) = (−x, y, z),

which is a symmetry of the Dynkin diagram of U12 as shown in Figure 4.3.

f g = |g| versal monomials notation

x2y + y3 + z4 ∈ U12 C, ιxC 12 1 −
C2, ιxC

2 6 1, z2 (U12|Z6)′

ιxC
3 4 1, y, y2, xz2 (U12|Z4)′

C3 4 1, x, y, y2 (U12|Z4)′′

C4, ιxC
4 6 1, z, z2 (U12|Z3)′
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(U12|Z4)′

For (U12|Z4)′ we have

Fg = x2y + y3 + z4 + δxz2 + γy2 + βy + α

Fg,x = 2xy + δz2

Fg,y = x2 + 3y2 + 2γy + β

Fg,z = 4z2 + 2δxz.

If z = 0 at a critical point, there are two cases to consider. The first case is

when y = 0, in which case x 6= 0. This gives us a discriminantal component

Σ1 = {α = 0}.

The second case is when z = 0 but y 6= 0. This implies that x = 0, and the

component of the discriminant appearing here has equation

Σ2 = {27α2 − 18αβγ − β2γ2 + 4αγ3 + 4β3 = 0}.

The union of these discriminantal components Σ1 ∪Σ2 is isomorphic to a B3

type discriminant multiplied by the line in the direction of δ.

We consider finally the case z 6= 0. This implies that both x 6= 0 and

y 6= 0, and gives a component with equation

Σ3 = {δ6 + 4γδ4 + 16βδ2 + 64α = 0}.

A generic two dimensional section can not be found by simply setting two

variables to be constant. Rather, we take γ < 0 constant, and tilt slightly by

setting δ = γ + εβ, for some small ε > 0. In the figure below, Σ3 is displayed

in bold for distinction and the dashed line is the generic line from which we

find our relations.
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Σ1

Σ2

Σ3

?

1

2

3
4

−α

β

We notice the following adjacency:

(U12|Z4)′ → J10|Z4
∼= C

(4)
3 ,

details of the latter being described in Section 3.4.3. This implies without

calculation that critical points corresponding to Σ2 are of type A3. Since

critical points corresponding to Σ1 occur with multiplicity 2, these must be

2A1. Similarly, critical points corresponding to Σ3 occur with multiplicity 4

and so must be 4A1. We denote the Picard-Lefschetz operators h1, h2, h3, h4

number them according to the anticlockwise order in which the correspond-

ing simple loops leave ?. By the adjacency, the relations on h1, h3, h4 are

known. By moving the generic line around nearby non-generic points of the

discriminant we can add the relations involving the generator h2. The full set

of relations is described in the Dynkin diagram below. Intersection numbers

for the subdiagram corresponding to J10|Z4 are described in Section 3.4.3,

the remaining are described in Section 3.2. In this diagram the generators

from right to left are h2, h1, h4, h3.

2A1 A3 A3 4A1

2 4 4 2

4
i−1

4
i−1 4

−4 −4 −4 −8
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The weights of parameters are in the ratio (1 : 2 : 4 : 6). This ratio is not seen

as a ratio of weights of basic invariants for any group in the Shephard-Todd

classification [21], and the skeleton of our group has not been seen as a linear

complex reflection group.

(U12|Z4)′′

The singularity (U12|Z4)′′ may be identified with D
(4)
4 by the boundary sub-

stitution z0 = z4, and has already been seen for U12|Z4 on Page 71. This

happens because U12, like D4, has two normal forms. In fact, we can think

of U12 as being the direct sum of singularities

U12 = D4 ⊕ A3

which has already been used to get the Dynkin diagram of U12.

4.3 Classification of Equivariant Symmetries

The goal of the rest of this chapter is to list all smoothable equivariant

symmetries of the unimodal singularities. According to Proposition 2.5, a

necessary condition for an equivariant deformation to be smoothable is for

it to have a linear term in its deformation. We list all deformations with a

linear term and identify the non-smoothable deformations as they occur.

Proposition 4.1. Let X be stably equivalent to a function germ in two vari-

ables. If the g-versal deformation is of the form

Fg = xψ(x, y, z, λ) + zi,

where ψ is not constant, then Fg is not smoothable.

Proof. The curve xψ(x, y, λ) = 0 in the (x, y)-plane is, for any λ, with singu-

larities at the meeting points of its two component x = 0 and ψ = 0. Hence

the corresponding surfaces in C3 are never smooth.

We regularly reference this proposition throughout the following classification

to quickly identify non-smoothable deformations.
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In the classification of invariant symmetries we used the formula Σµi = µ

(see Page 34), where µi denotes the local Milnor number of the singularity

related to the cycle corresponding to the Picard-Lefschetz operator hi and

µ is the Milnor number of the unimodal singularity we are considering. In

short, the sum of local multiplicities is equal to the total Milnor number.

Since equivariant deformations never include the constant monomial, this

statement is generalised to

Σµi
wfi
wαi

= µ
wf
wα

,

where wfi is the quasi-degree of a function germ corresponding to the Picard-

Lefschetz operator hi, and wαi is the quasi-degree of the parameter αi mul-

tiplying the linear term in the deformation (when this is defined uniquely).

We also define wf and wα similarly for the function germ representing the

unimodal singularity.

Throughout the rest of this chapter, following what has been said in

Sections 2.1.2 and 2.1.3, we consider fractional powers of C. We do not

consider any integer powers of C since these have already been described in

the invariant classification.

We generalise the argument about the determinant of the matrix of ex-

ponents in the equivariant case. Consider the basic equivariant gx of the

meromorphic function f/x. The number of symmetries (f/x) ◦ g = f/x is

equal to the absolute value of

∆x =

∣∣∣∣∣∣∣
α1 − 1 β1 γ1

α2 − 1 β2 γ2

α3 − 1 β3 γ3

∣∣∣∣∣∣∣ ,
where αi, βi, γi are exponents of the system of equations in the corresponding

invariant problem. If ∆x = |gx| then every invariant symmetry of f/x, that is

every equivariant symmetry of f multiplying x by the same factor, is a power

of gx. We will also compare the basic equivariants to the Coxeter element.
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4.3.1 E12 3 x3 + y7 + z2

Consider the meromorphic functions

f/x = x2 + y7/x+ z2/x

f/y = x3/y + y6 + z2/y.

The Coxeter element and basic equivariants are

C(x, y, z) = (ωx, ε7y,−z)

gx(x, y, z; f) = (−x, ε3
14y,−iz;−f)

gy(x, y, z; f) = (ε7
18x, ε6y, ε

7
12z; ε6f),

and we have gx = C
3
2 , gy = C

7
6 . The determinants of the matrices of expo-

nents are

∆x =

∣∣∣∣∣∣∣
2 0 0

−1 7 0

−1 0 2

∣∣∣∣∣∣∣ = 28, ∆y =

∣∣∣∣∣∣∣
3 −1 0

0 6 0

0 −1 2

∣∣∣∣∣∣∣ = 36.

Since we have ∆x = |gx| and ∆y = |gy|, all equivariant deformations preserv-

ing the monomial x or y are given by power of gx or gy respectively.

f g = |g| versal monomials notation

x3 + y7 + z2 ∈ E12 gx 28 x −
gy 18 y −

g2
y, g

4
y 18,9 y, y4 E12/Z9

g3
y 12 y, y3, y5 E12/Z12

g7
x, g

9
y 4 y, x, y3, xy2, y5, xy4 E12/Z4
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E12/Z9

For E12/Z9 we have

Fg = x3 + y7 + z2 + βy4 + αy

Fg,x = 3x2

Fgy = 7y6 + 4βy3 + α.

At any critical point we have x = 0. Considering the variable y we find the

discriminant is of type B2. For α = 0 we have the equivalence

Fg|α=0 ∼ x3 + y4 + z2,

a critical point of type E6. For α 6= 0 critical points occur with multiplicity

3. To satisfy Σµi
wfi
wαi

= µ
wf
wα

, we make the following considerations.

We make a one-parameter deformation of a two variable representative

function germ of E12 in the direction of y, that is

f = x3 + y7 + αy.

For this quasi-homogeneous function we may take weights wf = 21, wα = 18.

The Milnor number of the singularity is µ = 12 giving

µ
wf
wα

= 14.

The first discriminant component {α = 0} corresponds to singularities of type

E6, for which we also write a one-parameter deformation in the direction of

y,

f1 = x3 + y4 + α1y.

In this case we may take wf1 = 12, wα1 = 9 to make f1 quasi-homogeneous.

Then we have

µ1
wf1
wα1

= 8.

This leaves a contribution of 6 which must come from the other components
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of the discriminant. Since these occur with multiplicity 3, they must be of

type 3A2.

In this y-axis x = z = 0, consider the deformation

F̃x=z=0 = y7 − 3y4 + 2y,

with its graph and the roots in the complex line Cy shown below.

y

F̃x=z=0

0 1 3
√

2

Cy

0 1 3
√

2

Adding the variable x3 to give

F̃z=0 = x3 + y7 − 3y4 + 2y

produces an order 3 ramification of Cy whose branching points are roots of

F̃x=z=0. A schematic picture of the cycles this produces are shown.

C2
x,y

(0, 1)

80



At the point (x, y) = (0, 1) of this surface we choose x for the coordinate. So

the meeting of the two triples is:

Cx

1

1ω

ωω

ω

Locally, this is the same as the intersection of two A
(3)
1 χ = ω-cycles. Locally,

this figure gives 3
1−ω . Addition of z2, for this local intersection number, is sim-

ilar to the stabilisation of the Z3-symmetric function y3−3y2 +2y+x0(+z2),

x0 = x3. Since this local configuration is present at three branching points,

we multiply this number by 3 to obtain the intersection number between

cycles e1, e2 : 〈e1, e2〉 = 9
1−ω .

We start to construct the Dynkin diagram.

E6 3A2

9 3

9
1−ω

U −9

We have still to find the self-intersection number of the cycle corresponding

to E6. Instead of doing this directly, we use the fact that the generators

satisfy the relation (h1h2)2 = (h2h1)2. The unknown U is the solution of a

linear equation and thus the solution is unique.

E6 3A2

9 3

9
1−ω

−9 ε9−1
(1−ω2)(ε9+ω) −9
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E12/Z12

The singularity E12/Z12 is adjacent to B
(4,3)
2 , details of which are given in

Section 3.3. Moreover, its deformation has discriminant of type B3, so it

remains only to extend the diagram.

D6 2A2 2A2

4 3 3

6
1−ω

6
1−ω

−6
(

1− ε512
ω−1

)
−6 −6

E12/Z4

The singularity E12/Z4 is adjacent J10/Z4, details of which can be found in

Section 3.4.3. A sabirification (see [12]) of a function germ corresponding to

J10/Z4 is given by

F J
α = x

(
x+ y2 + y − 1

) (
x− y2 + y + 1

)
+ αy

where the zero-level set is given by F J
0 . The following figure is arranged

as follows. Between the brackets [ ] the thin curve represents the graph

F J
0 = 0, the thick F J

α = 0, for some small, real α 6= 0.

x
↑

y→

82



Adding the monomial y7 we define Fα = y7 + F J
α , which is a deformation of

E12/Z4, which modifies the above graph of J12/Z4 by closing up the loops

on the outer sides of the brackets [ ]. Using this, we claim there exists

a sabirification of E12/Z4 whose graph is diffeomorphic to that given in the

figure, ignoring the brackets. Then the Dynkin diagram for E12/Z4 is a

simple extension of the diagram for J10/Z4.

2A1 2A1 2A1 2A1 2A1

2A1 2A1

2 22 2 2

2 2

−4 −4 −4 −4 −4

−4 −4

2 2 2 2

2 2

2(i+ 1)

u u
u = 2(i− 1)

We denote the lower of the three generators connected by curved edges by

h4, and travelling clockwise the other two are h7, h6 respectively to match

Table 5.1 on page 127. The corresponding χ′-cycles satisfy e4 = e6 + e7.

4.3.2 Z11 3 x3y + y5 + z2

The Coxeter element and basic equivariants are given by

C(x, y, z) = (ε4
15x, ε5y,−z)

gx(x, y, z; f) = (ε4
11x, ε

3
11y, ε

15
22z; ε4

11)

gy(x, y, z; f) = (ωx, iy, ε5
8z; if).

We have gx = C
15
11 , gy = C

5
4 . Since ∆x = |gx| = 22 and ∆y = |gy| = 24, all

symmetries are powers of the basic equivariants.
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f g = |g| versal monomials notation

x3y + y5 + z2 ∈ Z11 gy, g
3
y 24,8 y −

g2
y 12 y, y3 Z11/Z12

gx, g
2
x 22,11 x −

g6
y 4 y, y3, xy, xy3 Z11/Z4

The singularities Z11/Z12 and Z11/Z4 are not smoothable since in both cases

the deformation is of the form

Fg = yψ(x, y, λ) + z2.

4.3.3 E13 3 x3 + xy5 + z2

The Coxeter element and basic equivariants are

C(x, y, z) = ωx, ε2
15y,−z)

gx(x, y, z; f) = (−x, ε5y,−iz;−f)

gy(x, y, z; f) = (ε5
13x, ε

2
13y, ε

15
26z; ε2

13f).

We have gx = C
3
2 , gy = C

15
13 . Since ∆x = |gx| = 20 and ∆y = |gy| = 26, all

symmetries are powers of the basic equivariants.

f g = |g| versal monomials notation

x3 + xy5 + z2 ∈ E13 gx 20 x −
gy, g

2
y 26, 13 y −

g5
x 4 x, xy, xy2, xy3 E13/Z4

The singularity E13/Z4 is not smoothable since its deformation is of the form

Fg = xψ(x, y, λ) + z2.
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4.3.4 Q10 3 x2z + y3 + z4

The classical monodromy and basic equivariants are

C(x, y, z) = (ε3
8x, ωy, iz)

gx(x, y, z; f) = (ε3
5x, ε

8
15y, ε

2
5z; ε3

5f)

gy(x, y, z; f) = (ε9
16x,−y, ε3

8z;−f)

gz(x, y, z; f) = (−x, ε4
9y, ωz;ωf).

We have gx = h
8
5 , gy = h

3
2 , gz = h

4
3 . Since the determinants of the matrices

of exponents are equal to the order of the basic equivariants, all symmetries

are powers of the basic equivariants.

f g = |g| versal monomials notation

x2z + y3 + z4 ∈ Q10 gz, g
2
z 18, 9 z −

gy 16 y −
gx 15 x −
g3
x 5 x, yz Q10/Z5

Q10/Z5

The singularity Q10/Z5 has deformation and partial derivatives:

Fg = x2z + y3 + z4 + βyz + αx

Fg,x = 2xz + α

Fg,y = 3y2 + βz

Fg,z = x2 + 4z3 + βy.

For α = 0 we have

Fg|α=0 ∼ x2z + y3 + yz.

The Milnor number of this is 5 (by finding a basis for the local algebra, for

example), and the presence of the non-degenerate quadratic form yz means

this is a codimension 2 singularity. For these reasons, the critical point is of

type A5. For α 6= 0 the discriminantal component is of type A2. A generic
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line intersects this component twice, and singularities on this component

occur with multiplicity 2. To satisfy Σµi
wfi
wαi

= µ
wf
wα

, this component must

correspond to singularities of type 5A1.

The discriminant is the union of a standard A2 type cusp and a line tan-

gent to the cusp. We will calculate the braiding relations for the generators

of the fundamental group of the complement to the discriminant. Take a

generic line in the complement to the discriminant transverse to the line

α = 0. In this line we may use β as a coordinate and identify the line with

the space Cβ. Projecting the generic point ? along this line gives a point in

the space Cα. A operator D that moves a point continuously by 2π/3 around

the origin in Cα induces a homotopy between a copy of the line over 1 and a

copy of the line over ω. The operator D is defined in such a way that D3 de-

fines a closed path in Cα, the induced homotopy of which in the whole space

C2 is just the identity. We watch what happens to the generators during this

process to find relations.

1

2

3

?

D3

γ1

γ2

γ3

?

7→

D(γ1)

D(γ2)

D(γ3)

?
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Let γ̄i denote the loop γi traversed in the opposite direction. The operator

D may be written in terms of the generating loops as follows.

D :

γ1 7→ γ̄1γ̄2γ3γ2γ1

γ2 7→ γ̄1γ2γ1

γ3 7→ γ1

Note that this also implies that D : γ3γ2γ1 7→ γ3γ2γ1. We continue.

D2 :

γ1 7→ γ̄1γ̄2γ̄3γ1γ3γ2γ1

γ2 7→ γ̄1γ̄2γ̄3γ2γ3γ2γ1

γ3 7→ γ̄1γ̄2γ3γ2γ1

D3 :

γ1 7→ γ̄1γ̄2γ̄3γ̄1γ̄2γ3γ2γ1γ3γ2γ1

γ2 7→ γ̄1γ̄2γ̄3γ̄1γ2γ1γ3γ2γ1

γ3 7→ γ̄1γ̄2γ̄3γ1γ3γ2γ1

Since the action of D3 on the generating loops is homotopically equivalent

to the identity, we deduce the braiding relations

γ1γ2γ3γ2γ1 = γ3γ2γ1γ3γ2

γ1γ3γ2γ1γ2 = γ2γ1γ3γ2γ1

γ3γ2γ1γ3 = γ1γ3γ2γ1,

where the first relation may be ignored since it is implied by the other two.

We find that this group is isomorphic to the braid group obtained from taking
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the unique lift of the Shephard-Todd group G13 in the style of [7], and use the

convention from that paper to draw the Dynkin diagram, where the generator

in the bottom right is h1, and travelling clockwise generators are h1, h2, h3.

We use unknowns U, V,W to denote the unknown intersection numbers.

A5

5A1

5A1

5

2

2

−5

−10

−10

W

U

V

Let e1, e2, e3 denote the χ′-cycles corresponding to generators h1, h2, h3. We

may normalise e2 according to the ambiguity in labelling chains up to power

of −ε5 so that the following relation holds for some constant K

e1 + e3 −Ke2 = 0.

Taking the intersection of this condition with each cycle, we find the system

of equations

〈e1, ei〉+ 〈e3, ei〉 −K 〈e2, ei〉 = 0

for i = 1, 2, 3. Substituting in the unknowns U, V,W , the system becomes

−10 + w −KU = 0

u+ V + 5K = 0

W − 10−Kv = 0,
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where we use the notation U = u, and so on.

The unknowns U,W (and therefore u,w) can be eliminated from this

system of equations by

U = −v − 5K

W = 10 +Kv,

leaving the condition on the remaining unknowns

9−KV −Kv + 10|K|2 = 0. (4.1)

In the chart e1, e2, we write our generators explicitly and use the relations

h1h3h2h1h2 − h2h1h3h2h1 = 0

h3h2h1h3 − h1h3h2h1 = 0.

We see by taking resultants of entries in these matrices to eliminate V that

each matrix relation yields one scalar equation. Let these be S and T . Taking

resultant(S, T, v) gives a degree 4 equation on |K|2. This has four solutions:

1, a negative solution, and two complicated solutions. Working backwards

from the complicated solution shows that they violate the hyperbolicity con-

dition (the determinant of the intersection matrix must be negative), and

we must therefore choose K = 1. This provides all of the other intersection

numbers.

A5

5A1

5A1

5

2

2
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−5

−10

−10

2 + ε5 + ε2
5

ε5 + ε5 2

ε5
+
ε5

2

As we calculated, the cycles satisfy the relation e1 + e3 = e2.

4.3.5 E14 3 x3 + y8 + z2

The Coxeter element and basic equivariants are given by

C(x, y, z) = (ωx, ε8y,−z)

gx(x, y, z; f) = (−x, ε3
16y,−iz;−f)

gy(x, y, z; f) = (ε8
21x, ε7y, ε14z; ε7f).

We have gx = C
3
2 , gy = ιzC

8
7 . Symmetries coming from powers of the basic

equivariants are given in the table below. The determinant of exponents

∆x = 32 = 2|gx|, and extra symmetries are composition of powers of gx with

the involution ιz. Since this singularity is stably equivalent to a function

germ of two variables, z being the third, we ignore such symmetries. We also

observe ∆y = 42 = |gy|, and consider symmetries coming from powers of gy.

f g = |g| versal monomials notation

x3 + y8 + z2 ∈ E14 gy, g
2
y 42, 21 y E14/Z21

gx 16 x E14/Z16

g3
y, g

6
y 14, 7 y, xy3 E14/Z7

E14/Z7

The singularity E14/Z7 has deformation and partial derivatives

Fg = x3 + y8 + z2 + βxy3 + αy

Fg,x = 3x2 + βy3

Fg,y = 8y7 + 3βxy2.
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At α = 0 we have

Fg|α=0 ∼ x3 + xy3 + z2,

a critical point of type E7. For α 6= 0 (i.e. y 6= 0) we find the relation

α = (−β/3)3, meaning the discriminant is of type G2. Since a generic line

intersects this component once, and singularities corresponding to this com-

ponent have multiplicity 7, they must be of type 7A1 to satisfy Σµi
wfi
wαi

= µ
wf
wα

.

In two variables, for generic value of α, β, consider the zero level of the

function of a branched cover of Cy. The branching points are zeros of Σx,

which has equation

Σx = (αy + y8)2 + (βy3)3

= y2(y14 + (2α + β3)y7 + α2) = 0.

Choosing α, β so that the values of y7 are real negative, we have the following

picture in Cy for the branching points. The branching at y = 0 is of order 3,

elsewhere of order 2.

Cy

0

A

B

This picture is for a base point ? ∈ Λ \ Σ. As ? moves to the component

corresponding to the E7 singularity, the interior points collapse to the origin.

As ? moves to the component corresponding to the 7A1 singularities, we
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collapse the pairs of order 2 branching points. Joining the inner branching

points along the involved pairs of sheets to the origin of the curve, we get

the 7 circles from which we make the vanishing E7 χ
′-cycle.

Cx,y

0

A B

Therefore, in the two variable case the intersection of the two χ-cycles in 7

and this survives adding z2. We begin to construct the Dynkin diagram.

E7 7A17
14 2

U −14

We have still to find the self-intersection number of the cycle corresponding

to E7. Instead of doing this directly, we use the fact that the generators

satisfy the relation (h1h2)3 = (h2h1)3. The unknown U is the solution of a

linear equation and thus the solution is unique.

E7 7A17
14 2

−7 1−ε14
1−ε14−ε27 −14
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4.3.6 Z12 3 x3y + xy4 + z2

The Coxeter element and basic equivariants are

C(x, y, z) = (ε3
11x, ε

2
11y,−z)

gx(x, y, z; f) = (ε3
8x, iy, ε

3
16z; ε3

8f)

gy(x, y, z; f) = (ωx, ε2
9y, ε

11
18z; ε2

9f).

We have gx = ιzC
11
8 , gy = C

11
9 . Since the determinants of the matrices of

exponents are equal to orders of the respective basic equivariants, all sym-

metries are powers of these basic equivariants.

f g = |g| versal monomials notation

x3y + xy4 + z2 ∈ Z12 gx 16 x −
gy, g

2
y 18, 9 y −

g2
x 8 x, xy2 Z12/Z8

g3
y, g

6
y 6, 3 y, xy, y4 Z12/Z6

g4
x 4 x, xy, xy2, x3 Z12/Z4

The singularities Z12/Z8 and Z12/Z4 are not smoothable since in both cases

the deformation is of the form

Fg = xψ(x, y) + z2.

The singularity Z12/Z6 is not smoothable since its deformation is of the form

Fg = yψ(x, y) + z2.

4.3.7 W12 3 x4 + y5 + z2

The Coxeter element and basic equivariants are given by

C(x, y, z) = (ix, ε5y,−z)

gx(x, y, z; f) = (ωx, ε4
15y, ε6z;ωf)

gy(x, y, z; f) = (ε5
16x, iy, ε

5
8z; if).
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We have gx = ιzC
4
3 , gy = C

5
4 . The determinants of exponents satisfy ∆x =

30 = |gx|, ∆y = 32 = 2|gy|. The factor of 2 in |gy| may be ignored due to the

usual stabilisation considerations, and we consider only symmetries arising

as powers of the basic equivariants.

f g = |g| versal monomials notation

x4 + y5 + z2 ∈ W12 gy 16 y −
gx, g

2
x 30, 15 x −

g2
y 8 y, y3 W12/Z8

g5
x, g

10
x 6, 3 x, y2, x2y, xy3 W12/Z6

W12/Z8

The singularity W12/Z8 has deformation and partial derivatives

Fg = x4 + y5 + z2 + βy3 + αy

Fg,x = 4x3

Fg,y = 5y4 + 3βy2 + α.

At any critical point we must have x = 0, so by considering the variable y

we see the discriminant is of type B2. At α = 0 we have

Fg|α=0 ∼ x4 + y3 + z2,

a critical point of type E6.

Since a generic line intersects the α 6= 0 component once, and singularities

corresponding to this component have multiplicity 2, they must be of type

2A3 to satisfy Σµi
wfi
wαi

= µ
wf
wα

.

To find the intersection number between the cycles we use similar methods

to those given on Page 79 for E12/Z9. Consider the deformation

F̃x=z=0 = y(y2 − 1)(y2 − 4),

and its graph.
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y

F̃x=z=0

−2 −1 0 1 2

Adding the monomial x4 we get

F̃z=0 = x4 + y(y2 − 1)(y2 − 4).

The branching points giving by the zero level of this surface are roots of

F̃x=z=0. The schematic picture is as follows.

Cx,y

(0, 1)

To find the intersection number of the two cycles, consider the picture at

(x, y) = (0, 1) with local coordinate x.
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Cx

−i

−i

−1

−1 i
i

1

1

So the local intersection number in 2 variables is the same as the intersection

number between two cycles of type A3, and this is given in Section 3.2.

This number survives the addition of the third variable z2 under the usual

stabilisation procedure, and since we must also consider the point (x, y) =

(0,−1), we take twice this number giving the Dynkin diagram as follows.

E6 2A38
1−i

8 4

U −8

We have still to find the self-intersection number of the cycle corresponding

to E6. Instead of doing this directly, we use the fact that the generators

satisfy the relation (h1h2)2 = (h2h1)2. The unknown U is the solution of a

linear equation and thus the solution is unique. Note that the self-intersection

number of the cycle corresponding to the E6 singularity is different to what

has been seen earlier due to a different symmetry (that is E12/Z9 on page 79).

E6 2A38
1−i

8 4

4(
√

2− 2) −8
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W12/Z6

The singularity W12 3 x4 + y5 + z2 has quasidegree 20, the variables have

weights 5, 4 and 10 respectively. Consider the deformation

Fg = x4 + y5 + z2 + δxy3 + γx2y + βy2 + αx

Fg,x = 4x3 + δy3 + 2γxy + α

Fg,y = 5y4 + 3δxy2 + γx2 + 2βy.

The ratio of the weights of the parameters

δ : γ : β : α = 1 : 2 : 4 : 5

is not seen anywhere in the Shephard-Todd classification, and so our discrim-

inant is of unknown type.

We note the adjacency W12/Z6 → X9/Z6, and so our diagram is ob-

tained by adding a vertex to the known diagram for X9/Z6, which is given

in Section 3.4.2.

If we assume xy = 0 in Fg and its derivatives, we find that x = y = 0.

The discriminant component corresponding to such critical points of Fg is

Σ1 = {α = 0}, and Fg has singularities of type A3 on this component. Next

assume xy 6= 0. The discriminant component in this case is

Σ2 = { −8β2γ5δ2 − 5000δβα3 + β2γ4δ4 − 8γ2β3δ4 − 27δ6α2β − 128β4δ2γ +

+64γ3β3δ2 + 500α3δγ2 + 4000γβ2α2 − 225α3δ3γ + 1800δ2β2α2 +

+32δ3β3α− 200βγ3α2 + α2γ3δ4 − 8α2γ4δ2 + 768γ2β4 + 16γ5α2 +

+16β2γ6 − 192β3γ4 + 16β4δ4 + 27α3δ5 − δ5γ3αβ + 8δ3γ4αβ −

−16δγ5αβ + 704δγ3αβ2 − 296δ3γ2αβ2 − 2560δγαβ3 + 36δ5γαβ2 +

+216δ4α2βγ − 430γ2α2δ2β + 3125α4 − 1024β5 = 0 }.

A generic section is found by setting γ, δ sufficiently large and negative.

The diagram is given below along with a generic line. In this section the

component Σ2 is isomorphic to a generic section of an A4 discriminant, the
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Σ1 component is a line arranged in such a way as to create a triple point and

a tangential point of the generic section. We number the loops around the

discriminant according to the order in which they leave the point ? in the

anticlockwise direction.

?

1

2

3
4

5

α

β

The majority of relations come from the adjacency to X9/Z6. In our notation

the new generator is h5. In the diagram, h5 corresponds to the lower right

hand vertex. Travelling clockwise, other vertices correspond to h4, h2, h3, h1

respectively.

3A1 3A1 3A1

A3 3A1

2 2 2

3 2
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−6 −6 −6

−3 −6

3 3

3 3ω u −3

3ω
u = 3(1− ω)

Most intersection numbers come from the adjacency, the remaining from

Section 3.2. The weights of the deformation parameters are in the ratio

(1 : 2 : 4 : 5). This has not been seen before as a ratio weights of basic

invariants of groups in any classification, and the skeleton is new.

The χ′-cycles corresponding to the generators connected by the curved

edges satisfy the relation e3 = e4 + e5.

4.3.8 Q11 3 x2z + y3 + yz3

The Coxeter element and basic equivariants are

C(x, y, z) = (ε7
18x, ωy, ε

2
9z)

gx(x, y, z; f) = (ε7
11x, ε

6
11y, ε

4
11z; ε7

11f)

gy(x, y, z; f) = (ε7
12x,−y, ωz;−f)

gz(x, y, z; f) = (−x, ε3
7y, ε

2
7z; ε2

7f).

We have gx = C
18
11 , gy = C

3
2 and gz = C

9
7 . Since the determinants of the

matrices of exponents are equal to the orders of the basic equivariants, powers

of the basic equivariants give all symmetries.

f g = |g| versal monomials notation

x2z + y3 + yz3 ∈ Q11 gz, g
2
z 14, 7 z Q11/Z14

gy 12 y Q11/Z12

gx 11 x Q11/Z11

g3
y 4 y, yz, yz2 Q11/Z4

The singularity Q11/Z4 has deformation

Fg = x2z + y3 + yz3 + γyz2 + βyz + αy.
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This is not smoothable since it is of the form

Fg = x2z + yψ(y, z, λ)

and has a critical point whenever

x = y = ψ(0, z, λ) = 0.

4.3.9 Z13 3 x3y + y6 + z2

The Coxeter element and basic equivariants are given by

C(x, y, z) = (ε5
18x, ε6y,−z)

gx(x, y, z; f) = (ε5
13x, ε

3
13y, ε

5
26z; ε5

13f)

gy(x, y, z; f) = (ωx, ε5y, ε10z; ε5f)

We have gx = ιzC
18
13 and gy = ιzC

6
5 . The determinant ∆x = 13 = |gx| and so

all symmetries preserving the monomial x are powers of gx. We find further

that ∆y = 30 = |gy|, so all symmetries preserving the monomial y are powers

of gy.

f g = |g| versal monomials notation

x3y + y6 + z2 ∈ Z13 gy, g
2
y 30, 15 y −

gx, g
2
x 26, 13 x −

g3
y , g

5
y 10, 6 y, xy Z13/Z10

The singularity Z13/Z10 is not smoothable since its deformation is of the form

Fg = yψ(x, y, λ) + z2.
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4.3.10 S11 3 x2z + yz2 + y4

The Coxeter element and basic equivariants are given by

C(x, y, z) = (ε5
16x, iy, ε

3
8z)

gx(x, y, z; f) = (ε5
11x, ε

4
11y, ε

6
11z; ε5

11f)

gy(x, y, z; f) = (ε5
12x, ωy,−z;ωf)

gz(x, y, z; f) = (−x, ε2
5y, ε

3
5z; ε3

5f).

We have gx = C
16
11 , gy = C

4
3 and gz = C

8
5 . The orders of the matrices of

exponents are equal to the orders of the basic equivariants, and so symmetries

are all powers of the basic equivariants.

f g = |g| versal monomials notation

x2z + yz2 + y4 ∈ S11 gy 12 y −
gx 11 x −

gz, g
2
z 10, 5 z −

g2
y 6 y, yz S11/Z6

g4
y 3 y, yz, xy2 S11/Z3

The singularities S11/Z6 and S11/Z3 are not smoothable since in both cases

the deformation is of the form

Fg = yψ(x, y, z, λ) + x2z.

4.3.11 W13 3 x4 + xy4 + z2

The Coxeter element and basic equivariants are given by

C(x, y, z) = (ix, ε3
16y,−z)

gx(x, y, z; f) = (ωx, iy, ε6z;ωf)

gy(x, y, z; f) = (ε4
13x, ε

3
13y, ε

8
13z; ε3

13f).

We have gx = ιzC
4
3 , gy = C

16
13 . Again we observe the determinants of the

exponent matrices are the same as the orders of the basic equivariants except
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for a factor of 2 for gx coming from the z coordinate, which can be ignored

since the singularity is stably equivalent to a function of two variables.

f g = |g| versal monomials notation

x4 + xy4 + z2 ∈ W13 gy 13 y −
gx 12 x −
g2
x 6 x, xy2 W13/Z6

g4
x 3 x, xy, xy2 W13/Z3

The singularities W13/Z6 and W13/Z3 are not smoothable since in both cases

the deformation is of the form

Fg = xψ(x, y) + z2.

4.3.12 Q12 3 x2z + y3 + z5

The Coxeter element and basic equivariants are

C(x, y, z) = (ε2
5x, ωy, ε5z)

gx(x, y, z; f) = (ε6x, ε18y, ε
5
6z; ε6f)

gy(x, y, z; f) = (ε10x,−y, ε3
10z;−f)

gz(x, y, z; f) = (−x, ε5
12y, iz; if).

We have gx = ιx,y,zC
5
3 , gy = ιxC

3
2 , gz = C

5
4 , where

ιx,y,z(x, y, z) = (−x,−y,−z).

So all symmetries preserving the monomial x are powers of gx.

The determinant of the matrix of exponents coincides with the order of

the basic equivariant in the case ∆x = 18 = |gx|. For gy and gz we have

∆y = 20 = 2|gy|,

and

∆z = 24 = 2|gz|.
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So all symmetries preserving the monomial y (resp. z) are given by pow-

ers of gy (resp. gz) and compositions of these powers with the involution

ιx(x, y, z) = (−x, y, z), corresponding to the symmetry of the Dynkin dia-

gram of Q12 (shown in Figure 2.2.1 on Page 13).

f g = |g| versal monomials notation

x2z + y3 + z5 ∈ Q12 gx 18 x −
gz, ιxgz 12 z −
gy, ιxgy 10 y −
g2
x 9 x, z2 Q12/Z9

g3
x, ιxg

2
z 6 z, x, z3 Q12/Z6

g2
z 6 z, z3 (Q12/Z6)′

g3
z 4 z, xy, yz2 Q12/Z4

ιxg
3
z 4 z, yz2 (Q12/Z4)′

g9
x, g

5
y, g

6
z 2 z, y, x, z3, z2, yz4 Q12/Z2

ιxg
5
y , ιxg

6
z 2 z, y, z3, xy, yz2, yz4 (Q12/Z2)′

Q12/Z9

In this case we have

Fg = x2z + y3 + z5 + βz2 + αx

Fg,x = 2xz + α

Fg,y = 3y2

Fg,z = x2 + 5z4 + 2βz.

So at any critical point y = 0. Assuming z = 0, then we have also that x = 0

giving the component α = 0 for the singularity. If we assume z 6= 0, we find

also that x 6= 0 and we get a second component for the discriminant given

by the equation α2 + β2 = 0. On the α = 0 component we have

Fg|α=0 ∼ x4 + y3 + z2,

a critical point of type E6. Since a generic line intersects the α 6= 0 component
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twice, and singularities corresponding to this component have multiplicity 3,

they must be of type 3A2 to satisfy Σµi
wfi
wαi

= µ
wf
wα

.

We start by calculating the self-intersection of the cycles corresponding to

the E6 singularity. Define the deformation

F̃y=z=0 = x4 − x,

which has roots x = 0, 1, ω, ω. We draw these in the Cx plane.

Cx

Adding the variable y to get the deformation

F̃z=0 = x4 − x+ y3

gives an order 3 covering of the space branched at the roots of F̃y=z=0. The

schematic picture is given.
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Cx,y

I

II

III 1

ω

ω

ε2
9

ωε2
9

ωε2
9

For simplicity we reduce the cycle into the union of three cycles, labelled I,

II, III above. The labelling comes from the character

χ′ =
ωε9ω

ω
= ε2

9,

and continues for III in the cyclic way.

Consider just the intersection between cycle I and cycle II in 3 variables

by including z such that F̃ = x4 − x+ y3 + z2. The local picture is given in

the Cy and Cz direction respectively.

Cy

1

ε2
9

ω

ωε2
9

ω
ωε2

9

Cz

To calculate the intersection number 〈I, II〉 we make standard calculations in

the Cy direction, remembering the result should be taken with −1 according
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to what happens in the Cz direction. We repeat this method for 〈I, II〉, and

find

〈I, II〉 = ε9
2 3

1− ω

〈II, I〉 = ε2
9

3

1− ω
.

The self-intersection number 〈I, I〉 = −3 using methods identical to the A3

case given in Section 3.2. Adding these gives

〈I, II〉+ 〈II, I〉+ 〈I, I〉 = ε9
2 3

1− ω
+ ε2

9

3

1− ω
− 3.

The total self-intersection number is 3 times this. Similar calculations to

those done for Q10/Z5 on page 85 give the other intersection numbers, and

the Dynkin diagram is given.

E6

3A2

3A2

9

3

3

−9b

−9

−9

9(a+ 1)

−9a

−9a

a =
1− ε9

2

ω − 1

b =
1

(ε9 + ε9)(ε9 + ε9 + 1)
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If generators h1, h2, h3 correspond to cycles e1, e2, e2, the relation on these

cycles is e1 + e2 + e3 = 0.

Q12/Z6

We have:

Fg = x2z + y3 + z5 + γz3 + βx+ αz

Fg,x = 2xz + β

Fg,y = 3y2

Fg,z = x2 + 5z4 + 3γz2 + α.

So at any critical point we have y = 0. If z = 0, we get a component of the

discriminant with β = 0. If z > 0 is fixed, we get a component with equation

27β4 + 72γβ2α + 64α3 − 16γ2α2 − 16γ3β2 = 0,

a swallowtail. So the discriminant is the union of a swallowtail with its plane

of symmetry. A generic two dimensional section is given.

We notice that this singularity is adjacent to a known singularity

Q12/Z6 → P8/Z6,

details of which can be found in Section 3.4.1. The discriminant in the P8

case is just three intersecting lines, which can be seen near the triple point
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in the generic section of the discriminant of Q12/Z6. All components of the

discriminant in the P8 case correspond to singularities of type 2A2, as they

therefore must also do in the Q12 case.

Information from the discriminant and from the known singularity may be

combined to begin constructing the Dynkin diagram and intersection diagram

for this singularity. The ratio of quasi-degrees of the parameters coincides

with that of the Shephard-Todd group G(6, 2, 3). Since braiding and braid-

like relations in this group are also satisfied by our generators, we use the

convention of [7] to construct our Dynkin diagram.

2A2 2A2

2A2

2A2

3 3

3

3

−6 −6

−6

−6

−6ω

−6ω

V

U

−6ω

The known ternary relations coming from P8 imply that U = −V. From

Section 3.2 we may take U = −6
1−ω .

2A2 2A2

2A2

2A2

3 3

3

3
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−6 −6

−6

−6

−6ω

−6ω

−6
ω−1

−6
1−ω

−6ω

We denote the leftmost of the three generators connected by curved edges by

h2, and travelling clockwise the other two are h4, h3 respectively to match

Table 5.1 on page 127. The corresponding χ′-cycles satisfy e2 + e3 + e4 = 0.

Q12/Z4

The singularity Q12/Z4 has deformation and partial derivatives

Fg = x2z + y3 + z5 + γyz2 + βxy + αz

Fg,x = 2xz + βy

Fg,y = 3y2 + γz2 + βx

Fg,z = x2 + 5z4 + 2γyz + α.

Assume at a critical point we have y = 0. This implies that x = 0 or z = 0.

Consider first the case x = 0. This further implies that z = 0, and defines

a component of the discriminant given by the equation α = 0. Next assume

that z = 0 but x 6= 0. This corresponds to a component with equation β = 0.

Finally, assume y 6= 0. The final component of the discriminant has equation

108α2 + β6 + 4γ3α + 2γ2β4 + 36αγβ2 + γ4β2 = 0

or 3

(
6α + β2γ +

1

9
γ3

)2

+

(
β2 − 1

3
γ2

)3

= 0.

A real generic section is shown for γ < 0.
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α

β

We observe using the adjacency

Q12/Z4 → P8/Z4

that the α = 0 component of our discriminant corresponds to A3 singularities,

the β = 0 component to 2A1 singularities, and the final component to 4A1

singularities. A generic section of the discriminant in the P8 case looks like

the section of the Q12 discriminant (shown above) near the origin. However,

this section is not maximal in the sense that some strata have gone complex.

Let us calculate the braiding relations for the generators of the fundamen-

tal group of the complement to the discriminant. We will take two generic

lines in the complement to the discriminant, and the operations D,D′ which

drag them line continuously around the origin to each other, keeping track

of both sets of generators. The action of D′ ◦D is homotopically equivalent

to the identity action restricted to the generating loops.

L

4

3

2

1

L′

4′

3′

2′

1′
D

D′
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Since it is clear from the picture that γ4 and γ′4 do not interact with the other

generators, we must have the equality γ4 = γ′4, and this generator is omitted

through the following calculation.

The operator D acts on the loops γ1, γ2, γ3 in L, by sending them to loops

in L′ which may be expressed in terms of γ′1, γ
′
2, γ
′
3.

γ3

γ2

γ1

?

7→

D(γ3)

D(γ2)

D(γ1)

?

The image of the loops under D are as follows.

D :

γ1 7→ γ̄1
′γ̄2
′γ̄3
′γ′2γ

′
3γ
′
2γ
′
1

γ2 7→ γ̄1
′γ̄2
′γ′3γ

′
2γ
′
1

γ3 7→ γ′1.

The operator D′ acts on the loops γ′1, γ
′
2, γ
′
3 in L′, by sending them to loops

in L which may be expressed in terms of γ1, γ2, γ3.

γ′3

γ′2

γ′1

?

7→

D′(γ′3)

D′(γ′2)

D′(γ′1)

?
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The image of the loops under D′ are as follows.

D′ :

γ′1 7→ γ̄1γ̄2γ3γ2γ1

γ′2 7→ γ̄1γ̄2γ1γ2γ1

γ′3 7→ γ̄1γ2γ1.

We take the composition,

D′ ◦D :

γ1 7→ γ̄1γ̄2γ̄3γ̄1γ̄2γ1γ2γ1γ3γ2γ1

γ2 7→ γ̄1γ̄2γ̄3γ̄1γ2γ1γ3γ2γ1

γ3 7→ γ̄1γ̄2γ3γ2γ1.

Using the fact that D′ ◦ D is homotopically equivalent to the identity on

these loops, we deduce the relations,

γ2γ1γ3γ2γ1 = γ1γ2γ1γ3γ2

γ1γ3γ2γ1γ2 = γ2γ1γ3γ2γ1

γ2γ1γ3 = γ3γ2γ1,

where the first relation is redundant as it is implied by the following two

relations. By similar methods, we can also deduce the following relations.

γ4γ3 = γ3γ4

γ2γ4γ2 = γ4γ2γ4

γ′2γ4γ
′
2 = γ4γ

′
2γ4,
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where γ′2 = γ1γ2γ1.

We now consider the imaginary strata. Take for example the generic

section with γ = −2. Then the point we are interested in is (α, β) = (0, 2i).

We will drag a generic line isomorphic to Cα around this point by the operator

D′′ shown below.

Cβ

0 1

2i
D′′

L0

Cβ

0

i

1

2i

D0

D1D1

The operator D′′ can be constructed in the following way

D′′ = D−1
0 ◦D2

1 ◦D0.

The parameter β occurs only in even powers in the non-trivial component

of the discriminant. This allows us to draw a real picture of the graph in

Cα,β by taking α ∈ R, β ∈ iR. This is equivalent to sending β 7→ iβ and

considering the real graph. We get

108α2 − β6 + 4γ3α + 2γ2β4 − 36αγβ2 − γ4β2 = 0,

the graph of which is as follows.
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α

β

L0

?
D1

D1

2

1

4

Taking L0 to be the line (α, i), the operator D2
1 gives the same results as

when considering a B2 discriminant, and we get the additional relation:

(γ1γ4)2 = (γ4γ1)2.

Since the relations on generators γ1, γ2, γ3 are present in [7], e.g. for the lifted

braid group corresponding to the Shephard-Todd group G15, we adopt this

Dynkin diagram as the subdiagram corresponding to these generators. In the

diagram, the generator on the far right is h4. Travelling around clockwise from

here, the generators are h4, h1, h3, h2. Standard considerations respecting the

known relations allow us to calculate the remaining intersection numbers.

2 2

2

4

2A1

4A1

A3

4A1
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−4u

−4

−4u

−4 −8

−8

−4

4

4i

u = i− 1

The χ′-cycles e1, e2, e3 corresponding to generators h1, h2, h3 satisfy the rela-

tion (1 + i)e2 = e1 + e3.

Non-smoothable deformations

The singularities (Q12/Z6)′ and (Q12/Z4)′ are not smoothable since in both

cases the deformation is of the form

Fg = zψ(x, y, z, λ) + y3.

Q12/Z2 and (Q12/Z2)′

In both cases the positive subspace in the cohomology is not split by the

group. Indeed, the singularities are adjacent to similarly Z2-equivariant P8

functions whose Hχ=1
2 (respectively Hχ=−1

2 ) contains the whole rank 2 kernel

of the P8 intersection form (this follows from consideration of the cubes of

the order 6 symmetries in lines 9 and 4 of Table 2 in [14]). Hence Hχ=1
2 of

Q12/Z2 (respectively Hχ=−1
2 of (Q12/Z2)′ ) contains the whole rank 2 positive

subspace of the Q12 intersection form.

We remark that in both cases the modular monomial yz4 enters Z2-

equivariant versal deformations.

4.3.13 S12 3 x2z + yz2 + xy3

The Coxeter element and basic equivariants are given by

C(x, y, z) = (ε4
13x, ε

3
13y, ε

5
13z)

gx(x, y, z; f) = (ε4
9x, ωy, ε

5
9z; ε4

9f)

gy(x, y, z; f) = (ε2
5, ε

3
10,−z; ε3

10f)

gz(x, y, z; f) = (−x, ε3
8y, ε

5
8z; ε5

8f).
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We have gx = C
13
9 , gy = C

13
10 , gz = C

13
8 . Orders of matrices of exponents are

equal to the order of the basic equivariants, so symmetries are powers of the

basic equivariants.

f g = |g| versal monomials notation

x2z + yz2 + xy3 ∈ S12 gy 10 y −
gx 9 x −
gz 8 z −
g2
y 5 y, yz S12/Z5

g2
z 4 z, y3 S12/Z4

g3
x 3 x, xy2, z2 S12/Z3

g5
y, g

4
z 2 y, z, xy, y3, y2z, y5 S12/Z2

The singularity S12/Z5 has deformation

Fg = x2z + yz2 + xy3 + βyz + αy.

This is not smoothable since it has a zero level critical point whenever

z2 + βz + α = 0, x = y = 0.

The singularity S12/Z4 has deformation

Fg = x2z + yz2 + xy3 + βy3 + αz.

This is not smoothable since it has a zero level critical point whenever

x2 + α = 0, y = z = 0.

The singularity S12/Z3 has deformation

Fg = x2z + yz2 + xy3 + γz2 + βxy2 + αx.

This is not smoothable since it has a zero level critical point whenever

y2 + βy2 + α = 0, x = z = 0.
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S12/Z2

In this case the positive subspace in the cohomology is not split by the

symmetry. Indeed, the singularity is adjacent to a similarly Z2-equivariant P8

function whose Hχ=−1
2 contains the whole rank 2 kernel of the P8 intersection

form (this follows from consideration of the cube of the order 6 symmetry

given in line 4 of Table 2 in [14]). Therefore, Hχ=−1
2 of S12/Z2 contains the

whole rank 2 positive subspace of the S12 intersection form.

We remark that the modular monomial y5 enters Z2-equivariant versal

deformation of S12/Z2.

4.3.14 U12 3 x3 + y3 + z4

The Coxeter element and basic equivariants are

C(x, y, z) = (ωx, ωy, iz)

gx(x, y, z; f) = (−x, ε5
6y, ε8z;−f)

gy(x, y, z; f) = (ε5
6x,−y, ε8z;−f)

gz(x, y, z; f) = (ε4
9x, ε

4
9y, ωz;ωf).

We have gx = σC
1
2 , gy = σ2C

1
2 , gz = C

4
3 , recalling the map σ(x, y, z) =

(ωx, ω2y, z). The determinants of the matrices of exponents are

∆x = 24 = |gx|

∆y = 24 = |gy|

∆z = 27 = 3|gz|.

Therefore all symmetries preserving the monomials x and y are powers of gx

and gy respectively. All symmetries preserving z are powers of gz and powers

of gz composed with σ.
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f g = |g| versal monomials notation

x3 + y3 + z4 ∈ U12 gx 24 x −
gy 24 y −

gz, σgz 9 z −
g3
x, g

3
y 8 x, y U12/Z8

U12/Z8

The singularity U12/Z8 has deformation and partial derivatives

Fg = x3 + y3 + z4 + βy + αx

Fg,x = 3x2 + α

Fg,y = 3y2 + β

Fg,z = 4z3,

so at any critical point we have z = 0. Critical points occur whenever

α = ωkβ, meaning the discriminant consists of three intersecting lines. A

generic line intersects the discriminant at three points, each of these points

corresponding to a singularity with orbit 2. Each component therefore cor-

responds to critical points of type 2A3 to satisfy Σµi
wfi
wαi

= µ
wf
wα

. This can

also be seen from the z4 monomial in f which is not deformed by Fg.

4

4

4

2A3

2A3

2A3

−8

−8

−8

U

V

W
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Take U, V,W above to be the unknown intersection numbers, and denote

U = u and so on. We may assume the relation between the cycles is e1 +

e2 +Ke3 = 0, where e1, e2, e3 are cycles corresponding to generators h1, h2, h3

where h1 is the leftmost generator and others are labelled anticlockwise in

the diagram. Taking the intersection of this condition with each cycle in turn

gives a system of simultaneous equations from which two unknowns may be

eliminated, and which yields another condition.

The hyperbolicity implies |U | > 8, |V | > 8, |W | > 8, and we look for

U, V,W ∈ Z 〈ε8〉 such that all relations are satisfied.

Writing generators explicitly in the chart e2, e3, we use similar methods

to those used for Q10/Z5 on page 85 to calculate the intersection numbers

which are unique up to the usual ambiguities.

4

4

4

2A3

2A3

2A3

−8

−8

−8

8
1−ε8

8
1−ε8

8
1−ε8

The χ′-cycles satisfy the relation e1 + e2 + e3 = 0.
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4.3.15 U12 3 x2y + y3 + z4

The Coxeter element and basic equivariants are given by

C(x, y, z) = (ωx, ωy, iz)

gx(x, y, z; f) = (−ix, iy, ε3
16z;−if)

gy(x, y, z; f) = (−x,−y, ε3
8z;−f)

gz(x, y, z; f) = (ε17
18x, ε

4
9y, ωx;ωf).

We have gx = ιxC
3
4 , gy = C

3
2 , gz = ιxC

4
3 . Also, ∆x = 16 = |gx| and ∆z =

18 = |gy|. So all symmetries preserving the monomials x and z are powers

of gx and gz respectively. We find ∆y = 16 = 2|gy|, meaning symmetries

preserving y are powers of gy and powers of gy composed with ιx.

f g = |g| versal monomials notation

x2y + y3 + z4 ∈ U12 gz, g
2
z 18, 9 z −

gx 16 x −
g2
x, gy 8 x, y U12/Z8

ιxgy 8 y, xy (U12/Z8)′

The singularity U12/Z8 is isomorphic to the one done in the previous section.

The singularity (U12/Z8)′ is not smoothable since its deformation is of

the form

Fg = yψ(x, y, λ) + z4,

and a similar argument holds.

This concludes the classification.
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Chapter 5

Group presentations

The motivation for this chapter comes from the relationship discussed in [7]

between generalised braid groups and Shepard Todd groups [21]. There,

results are discussed regarding relations on the generators and details about

the centre of the groups. In this chapter we give an exposition of experimental

results due to the classification. These are similar in nature to those of [7]

and are described in a similar way, but some things turn out harder to prove

since in our case all the groups are infinite.

5.1 Derivation of presentations

We choose χ = χ′ so that our monodromy group has hyperbolic signature and

recall that k is the number of basic elements from the local ring appearing

in the g-versal deformation Fg. Then Mχ′ ⊂ U(k − 1, 1) is a representation

of the fundamental group of the complement to the discriminant. It is the

image of the map

ρχ′ : π1(Λ \ Σ, ?)→ GL(k,C),

where as usual Λ and Σ respectively denote the base of a versal deformation

and the discriminant. Following Zariski, choose a generic line and a generic

plane containing this line in the base of our versal deformation: L ⊂ P ⊂ Λ.
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For ? ∈ L but ? 6∈ Σ it holds that:

π1(Λ \ Σ, ?) = π1(P \ {P ∩ Σ}, ?).

See for example [25]. We denote this group π1(Σ′). Assume Σ has multiplicity

`. Then we generate π1(Σ′) with ` elements: loops without mutual and self-

-intersections which travel from ? around distinct points of L ∩ Σ (exactly

as we defined them in Section 2.2.3 and onwards). Such a loop set is called

distinguished. Denote them by γ1, . . . , γ` in the anticlockwise order as they

leave ?. The relations between the generators may be read from P ∩ Σ, and

we denote this set of relations B({γi}). The group then has presentation:

π1(Σ′) = 〈γ1, . . . , γ`|B({γi})〉 .

Remark 5.1. We observe from the classification that for invariant symme-

tries we have k = `, and for equivariant symmetries we have either k = ` or

k = `− 1. In all cases Mχ′ acts on a k dimensional space.

We denote the generators ρχ′(γi) of Mχ′ by hi. Since the monodromy group

is a homomorphic image of the fundamental group of the complement to the

discriminant, all relations in B({γi}) must necessarily be preserved by ρχ′ ,

meaning the generators of Mχ′ satisfy B({hi}). The generators of the group

Mχ′ are complex reflections and as such have finite order. We denote the set

of such relations F({hi}) = {hΓi
i = 1, i = 1, . . . , `}, where Γi is the order of

the only eigenvalue of hi distinct from 1.

In a style similar to [7], we construct a short exact sequence:

{1} → Pχ′ → π1(Σ′)
ρχ′→Mχ′ → {1},

where Pχ′ is the kernel of the representation.

Definition 5.2. If non-generic points of P ∩ Σ are at most double points,

the group π1(Σ′) will be called a braid group, otherwise a braid-like group.

This corresponds with the definitions of braid relations and braid-like re-

lations in Sections 2.2.2 to 2.2.4. Braid groups have generators satisfying
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braid relations, braid-like groups have generators satisfying braid relations

and braid-like relations.

We observe in all our cases that the group Mχ′ is an irreducible subgroup

of GL(k,C), so by Schur’s lemma its centre is cyclic and generated by scalar

matrices. We denote the centre of a group G by ZG. Consider the restriction

of the short exact sequence of groups to their centres, also giving a short exact

sequence [7]:

{1} → ZPχ′ → Zπ1(Σ′)
ρχ′→ ZMχ′ → {1}.

Let Cσ denote an element Cσ =
∏k

i=1 hσ(i), where the order of Cσ is taken

to be N (which has already been introduced) for a certain choice of σ. We

choose one such Cσ and call it C.

Proposition 5.3. The group ZMχ′ contains a power of C.

Proof. The centre of a braid group is generated by all elements of the form

ζσ =
(∏k

i=1 γσ(i)

)q
where σ is a permutation of the set {1, . . . , k} providing

an ordering of group generators γi, and q is the smallest positive integer such

that the action of ζ on the strands of the braid(-like) group is equal to the

identity.

Since ρχ′ is a homomorphism, the element ρχ′(ζσ) =
(∏k

i=1 hσ(i)

)q
=

Cq
σ ∈ ZMχ′ . We choose one such element such that ρχ′(ζ) = Cq, for an

element C.

We observe that this result does not depend on the choice of C, provided C

is chosen to have order N .

Remark 5.4. Although Proposition 5.3 can be proved instantly by taking a

trivial power of C, the proof given allows us to make the following conjecture.

Conjecture 5.5. There are no elements in ZMχ′ other than those obtained

by taking power of C.

This implies that ρ−1
χ′ (ZMχ′) = Zπ1(Σ′) and moreover |ZMχ′| is finite. We

label the generators so that σ = id and C =
∏k

i=1 hi. In each case the
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value of q so that Cq ∈ ZMχ′ can be found experimentally. We make the

observation that q depends only on the skeleton of the Dynkin(-like) diagram,

and values of q for specific skeletons are given in Table 5.1. In each case where

the skeleton appears in the classification of discrete finite complex reflection

groups, the values of q agree. For skeletons of diagrams that don’t already

appear in the literature, our values seem to generalise the previous results [7].

This is what allows us to make Conjecture 5.5.

In the invariant case, we construct a presentation consisting of all known

relations so far. Presentations are ended with “. . .” to indicate the possibility

of more relations. This possible incompleteness of our presentation means

the following consideration does not depend on Conjecture 5.5.

Mχ′ =
〈
h1, . . . , h`|B(hi),F(hi), C

N = 1, . . .
〉
.

The projectivised version has presentation

PMχ′ = 〈h1, . . . , h`|B(hi),F(hi), C
q = 1, . . .〉 .

We must amend this definition slightly for the equivariant case. In the case

that the only linear monomial preserved by the equivariant symmetry is x,

we assume the basic equivariant has the form

gx = ξC
b
n ,

where ξ may be ιI , the involution from Section 2.1.3, or the identity. Then

we find experimentally that instead of N in our above definition, we should

choose

N ′ =
|gx|
|ξ|

=
Nn

ord(ξ)b
.

This is since gx = ξCwf/(wf−wx), where wf , wx are weights of f and x as

defined in Example 2.1. This leaves three cases in which more than one

linear term is preserved, namely E12/Z4, Q12/Z6 and U12/Z8, which may

be worked out directly using elementary matrix calculations with the group

generators. The following table indicates what value we should take for N ′
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for each of the equivariant symmetric singularities, giving the presentation

Mχ′ =
〈
h1, . . . , h`|B(hi),F(hi), C

N ′ = 1, . . .
〉
.

Singularity N ′

E12/Z9 36

E12/Z12 36

E12/Z4 4

Q12/Z5 15

E14/Z7 21

W12/Z8 16

W12/Z6 15

Q12/Z9 9

Q12/Z6 12

Q12/Z4 12

U12/Z8 8

As stated previously, in the invariant case we simply choose N ′ = N . We

further define the following groups, for which these relations stated so far are

the only relations:

Mχ′ =
〈
h1, . . . , h`|B(hi),F(hi), C

N ′ = 1
〉
,

PMχ′ = 〈h1, . . . , h`|B(hi),F(hi), C
q = 1〉 .

Conjecture 5.6. For each group in our classification, there exists an isomor-

phism of groups Mχ′
∼= Mχ′, and therefore also of the groups PMχ′

∼= PMχ′ .

This is equivalent to saying the matrix group Mχ′ is a faithful representation

of the abstract group Mχ′ .

Remark 5.7. The general philosophy is that a discrete group has few re-

lations, a non-discrete group has many. Since we know the projectivised

versions of our groups are discrete, we expect there to be few relations and

this allows us to make our conjecture.
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Remark 5.8. The projectivisations of all of the 2 dimensional groups do

indeed satisfy this conjecture since they are discrete subgroups of PU(1, 1)

and are isomorphic to triangle groups acting on the Poincaré disk. These

will be discussed more in Section 5.1.1. The 3 dimensional groups that can

be identified within the literature in Section 5.1.2 also satisfy the conjecture.

We conclude this subsection with a further conjecture which is an immediate

corollary of Conjecture 5.5 and Corollary 2.19.

Conjecture 5.9. For each symmetry considered in this thesis, the resulting

monodromy group Mχ′ is a discrete subgroup of U(k − 1, 1).

Idea of Proof: We know from Corollary 2.19 that the group PMχ′ is discrete.

We find the projectivised group by taking the quotient by the centre

Mχ′

/ZMχ′

−−−−−→ PMχ′ .

By Conjecture 5.5 ZMχ′ is finite, therefore the fibres of this map are finite.

5.1.1 2 Dimensional Groups

The group Mχ′ ⊂ U(k − 1, 1) ⊂ GL(k,C) acts on the space Ck with appro-

priately chosen coordinates z0, . . . , zk−1 so that Mχ′ preserves the Hermitian

form −|z0|2 + |z1|2 + · · ·+ |zk−1|2. In particular, Mχ′ sends the cone

−|z0|2 + |z1|2 + · · ·+ |zk−1|2 < 0

into itself. Setting z0 6= 0 defines an affine chart in CPk−1, in which the cone

is given by ∣∣∣∣z1

z0

∣∣∣∣2 + · · ·+
∣∣∣∣zk−1

z0

∣∣∣∣2 < 1.

The projectivisation PMχ′ of Mχ′ acts on CPk−1 preserving the projectivisa-

tion of the cone. In the affine chart z0 6= 0 and its coordinates wj =
zj
z0

, this

means that the action of PMχ′ sends the hyperbolic ball

B =
{
|w1|2 + · · ·+ |wk|2 < 1

}
⊂ Ck−1
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into itself.

For the rest of this section, we let k = 2 so that B = {|w1|2 < 1} ⊂ C.

Definition 5.10. For a triple of positive integers r1 ≤ r2 ≤ r3 such that
1
r1

+ 1
r2

+ 1
r3
< 1, there is a triangle in the Poincaré disk H with angles π/r1,

π/r2, π/r3, which is unique up to isometry. The hyperbolic reflections in the

sides of the triangle generate a group D(r1, r2, r3) of isometries of H, called a

hyperbolic triangle group, which has the triangle ∆ as fundamental domain.

Generating symmetries of this group are either holomorphic or anti-holomorphic.

Definition 5.11. We define the index 2 subgroupD+(r1, r2, r3) ⊂ D(r1, r2, r3)

to be the subgroup consisting of holomorphic functions, and call it a holo-

morphic triangle group.

The fundamental domain ∆+ is the union of two adjacent copies of ∆.

Theorem 5.12. The projectivised groups PMχ coming from the two di-

mensional deformations in our classification are holomorphic triangle groups

D+(r1, r2, r3). Table 5.2 lists all such groups.

The angles forming the hyperbolic triangles arise not only from the symme-

tries but also from the weights of the parameters in the versal deformation

as defined on page 4. If the singularity has the alternative notation X(m1,m2),

then the weights of basic invariants for the group X are equal to the weights

of parameters according to Section 2.2.6.

The quotient B/∆+ is a sphere with 3 marked points corresponding to the

Zri stationary groups. This space is isomorphic to the weighted projectivisa-

tion of the base of versal deformation. The orders of the marked points come

from the Picard-Lefschetz operators and the quasi-degrees of parameters in

the g-versal deformation (cf. Section 2.2.6).

Example 5.13. Consider the singularity E14|Z8. Discussed on Page 55, the

Dynkin diagram is as follows.

A7 A78
ε8−1

8 8

−8 −8
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Table 5.2: Triangle Groups
Singularities Alt. Notation r1, r2, r3

E12|Z7 A
(7)
2 2, 3, 7

Q10|Z8, E14|Z8 A
(8)
2 2, 3, 8

E12/Z9 B
(3,9)
2 2, 3, 9

Q12|Z10 A
(10)
2 2, 3, 10

Z11|Z10 G
(10)
2 2, 3, 10

U12|Z12 A
(12)
2 2, 3, 12

Q10|Z12, E14|Z12 B
(3,12)
2 2, 3, 12

Z13|Z9 B
(3,18)
2 2, 3, 18

S11|Z8,W13|Z8,W12/Z8 B
(4,8)
2 2, 4, 8

W12|Z10 B
(5)
2 2, 5, 5

U12|Z6 B
(6,6)
2 2, 6, 6

E17/Z7 G
(7,14)
2 2, 7, 14

U12|Z12 G
(4)
2 3, 4, 4

The intersection matrix of this singularity is(
−8 8

ε8−1
8

ε8−1
−8

)
,

and the Picard-Lefschetz operators are

h1 =

(
ε8 ε8

0 1

)
, h2 =

(
1 0

−1 ε8

)
.

The projectivised version of this group acts on CP1 with coordinate Z = (z :

1). The interior of the Poincaré disk H representing the points in the chart

is given by

(
z 1

)( −8 8
ε8−1

8
ε8−1

−8

)(
z

1

)
> 0.

This simplifies to
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∣∣∣∣z − 1

ε8 − 1

∣∣∣∣2 < ∣∣∣∣ 1

ε8 − 1

∣∣∣∣2 − 1 =

√
2

2
.

Let p1 be the projective point in this chart fixed by the generator h1. That

is, p1 is a solution of h1Z = Z. We find the only solution in our chart is

p1 =
1

ε8 − 1
.

This is at the centre of our chart. The other solution is z = ∞. When we

find roots of h2Z = Z, we find two solutions: z = 0, and z = ε8 − 1. The

latter of these is inside the disk corresponding to this chart, so we choose

p2 = ε8 − 1.

We let p12, p121 denote fixed points of elements h1h2, h1h2h1 respectively in

this chart. We find

p12 =
ε8(1 + i

√
3)

2
,

p121 = ε5
16.

The points mentioned are noted on the picture below, the fundamental do-

main ∆+ is any of the 3 kites shown.
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p1 p121 p2

p12

5.1.2 3 Dimensional Groups

In [18] there is a survey of discrete, complex projective subgroups of PU(2, 1).

In particular it contains the Mostow groups

Γp,k =

〈
J,A,R :

J3 = Ak = Rp = 1,

A = (JR−1J)2, AR = RA

〉
,

where permitted values for p, k are as follows.

p 3 3 3 4 4 5 5 6 6

k 4 5 6 3 4 2 3 2 3

Consider the family of groups arising in our classification:

PB(k,p)
3 =

〈
h1, h2, h3 :

hk1 = hp2 = hp3 = (h1h2h3)3 = 1

(h1h2)2 = (h2h1)2, h2h3h2 = h3h2h3, h1h3 = h3h1

〉
,

where p, k are the following.
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p 3 3 5 6

k 4 6 2 2

Proposition 5.14. For such groups appearing in this classification, there

exists an isomorphism

Γp,k ∼= PB(k,p)
3 .

Proof. An isomorphism is

J = h3h2h1

A = h1

R = h3.

This covers the groups

Q11|Z6
∼= C

(2,6)
3

Z13|Z6
∼= B

(6,3)
3

E13|Z10
∼= C

(2,5)
3

E12/Z12
∼= B

(4,3)
3 .

We have so far been unable to identify other projectivised 3 dimensional

groups within the literature. In [18], there are two more families of pro-

jectivised three dimensional groups; one of which is well presented, and the

other has four generators. It is possible that these groups correspond to

groups appearing in this thesis, but no isomorphism is known.
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Chapter 6

Appendix

6.1 Diophantine equation solver

##########################################

# Program to solve Diophantine Equations #

# with four unknown variables to find #

##########################################

# Declare variables

a:=’a’:b:=’b’:c:=’c’:d:=’d’:

# Define conditions to check equal zero

cond1:=<declare function>;

cond2:=<declare function>;

# Set iteration bounds per variable (must be positive)

MAXP:=<declare constant>;

# Loop around all combinations of all values of each variable

# within range

a:=-MAXP: while a<=MAXP do

b:=-MAXP: while b<=MAXP do

c:=-MAXP: while c<=MAXP do

d:=-MAXP: while d<=MAXP do

# Output values of variables if conditions are satisfied
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if(cond1=0 and cond2=0) then print([a,b,c,d,cond1,cond2]);

end if;

d:=d+1:

od:

c:=c+1:

od:

b:=b+1:

od:

a:=a+1:

od:

# End of program

6.2 Approximate Diophantine equation solver

#############################################################

# Program to approximate solutions to Diophantine Equations #

# with four unknown variables to find #

#############################################################

# Declare variables

a:=’a’:b:=’b’:c:=’c’:d:=’d’:

#Define polynomial

poly:=<declare polynomial>;

# Define constant polynomial should equal

value:=<declare constant>;

# Set iteration bounds per variable (must be positive)

MAXP:=<declare constant>;

# Greatest permitted error negative index

E:=<declare constant>;

# Loop around all combinations of all values of each variable

# within range

a:=-MAXP: while a<=MAXP do

b:=-MAXP: while b<=MAXP do
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c:=-MAXP: while c<=MAXP do

d:=-MAXP: while d<=MAXP do

# Output values of variables if conditions are satisfied

TEST:=evalf(abs(poly-value));

if(TEST<10^(-E)) then print([a,b,c,d,TEST]); end if;

d:=d+1:

od:

c:=c+1:

od:

b:=b+1:

od:

a:=a+1:

od:
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