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Abstract

We classify finite order symmetries g of the 14 exceptional unimodal function singularities f in 3
variables, which satisfy a so-called splitting condition. This means that the rank 2 positive subspace
in the vanishing homology of f should not be contained in one eigenspace of g?. We also obtain a
description of the hyperbolic complex reflection groups appearing as equivariant monodromy groups
acting on the hyperbolic eigensubspaces arising.

One of the most famous classical results in singularity theory is the Arnold and Brieskorn discovery
of the close relationship between simple function singularities and Weyl groups Aµ, Dµ, Eµ [1, 6]. A few
years after it, Arnold extended the relationship to simple singularities with the Z2 reflection symmetry
and Weyl groups Bµ, Cµ, F4 [2] (see also Slodowy’s book [24]).

Consideration of Zm symmetries of simple functions led in [10, 11, 12, 25] to the appearance of
Shephard-Todd groups within function singularities. The emphasis there was on realisations of the com-
plex reflection groups as equivariant monodromy groups acting on the appropriate character subspaces
in the homology of invariant Milnor fibres, and on the diffeomorphisms between the discriminants of the
reflection groups and of the Zm-equivariant functions.

A further series of papers [13, 14, 15], on cyclic symmetries of the parabolic functions, brought in
similar singularity realisations of certain complex crystallographic groups [22].

In this paper, we are naturally expanding the programme to cyclic symmetries of the 14 exceptional
unimodal function singularities on one hand, and complex hyperbolic reflection groups on the other.
The basic idea is as follows. In the 3-variable case, the intersection form on the vanishing homology
of an exceptional unimodal function f is non-degenerate and has positive signature 2. Assume g is
an automorphism of C3 of finite order m, and our function is g-invariant. Then g acts on the second
homology of the Milnor fibre f−1(ε), and decomposes it into a direct sum of the character subspaces
Hχ, χm = 1, on which g acts as multiplication by χ. Assume the rank 2 positive subspace of the
intersection form splits between two character summands. Then the monodromy within a g-invariant
versal deformation of f acts as a complex hyperbolic reflection group on each of them. Developing
further the technique introduced in papers on cyclically symmetric functions [10, 11, 12], we construct
vanishing bases in the hyperbolic summands and obtain the generating reflections as the corresponding
Picard-Lefschetz operators.

The main result of the paper is a complete classification of the invariant symmetries of the 14 singular-
ities, which split the positive subspace in the vanishing homology, and the description – via constructing
the corresponding Dynkin diagrams – of the complex hyperbolic groups arising. All the rank 2 reflection
groups obtained projectivise to the triangle groups of the Poincaré disk. The task of identification of
higher dimensional groups is left for a future paper, along with the consideration of the equivariant
symmetry setting. It should be noted that it is the first time when complex hyperbolic reflection groups
are appearing in a singularity theory context. The approach introduced may be useful for constructing
new complex hyperbolic lattices (cf. [8, 20]).

The paper is organised as follows. Section 1 introduces the notion of singularities with symmetry,
recalls the definitions and constructions given in [10, 11, 12]. Section 2 contains classification of split-
ting invariant symmetries of the 14 singularities. In Section 3.3 we construct Dynkin diagrams of the
hyperbolic monodromy groups associated with the symmetric functions. Projectivisations of the rank 2
monodromy groups are considered in Section 4. More details of the constructions may be found in [16].
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1 Singularities with symmetry

1.1 Symmetries and deformations

Our main objects of study will be pairs (f, g) consisting of a holomorphic function germ f : (Cn+1, 0)→
(C, 0) with an isolated singularity, and a finite order automorphism g of (Cn+1, 0) under which f is
invariant: f ◦ g = f . The automorphism g will be called a symmetry of the function.

Assume the coordinates x0, . . . , xn in (Cn+1, 0) are chosen so that g is a diagonal linear transformation.
Consider a deformation

f +
k∑
i=1

λiϕi (1)

of the function f , where the λi are parameters, and {ϕ1, . . . , ϕk} is the set of all g-invariant elements
of a monomial basis of the local ring Qf of f . In the standard sense, deformation (1) is a g-miniversal
deformation of f (see, for example [28]).

All through the paper, we use notation εm for e2πi/m, and reserve ω for ε3.

Example 1.1. Let f be a quasihomogeneous function of degree N with respect to the positive inte-
ger weights w0, . . . , wn of the coordinates xj on Cn+1. Assume gcd(w0, . . . , wn) = 1, and consider the
transformation

C : xj 7→ ε
wj

N xj , j = 0, . . . , n,

of Cn+1. This corresponds to the values of f making one full anti-clockwise rotation in C about the
origin. The transformation C is an order N symmetry of f . Take for an invariant symmetry g of f a
power of C that has order m: g = Cp, gm = id. Then the ϕi in (1) are exactly those elements of a
monomial basis of Qf whose degrees are divisible by m (cf. [25, 26]).

We shall use the notation Λ for the base of a g-miniversal deformation of a function f .

Definition 1.2. The discriminant Σ ⊂ Λ of f is the set of all values λ ∈ Λ of the parameters for which
the members of its g-versal family have critical value 0.

Since a non-zero constant function is g-invariant, the discriminant is a hypersurface in Λ.
In what follows we will be working with representatives of germs of functions and sets we have

introduced, but we will be still denoting them by the same letters.

1.2 Symmetric Milnor fibre and its equivariant monodromy

We define a Milnor fibre of a g-invariant function f following the usual approach (see [4, 5, 10]), as the
intersection of a sufficiently small ball in Cn+1 centred at the origin with the zero level of a generic
member of an appropriate representative of a g-versal family F of f .

Let us fix a generic point ? ∈ Λ \Σ. The Milnor fibre V? is homotopic to a wedge of µ n-spheres [19],
where µ is the Milnor number of f . A symmetry g sends V? into itself. Therefore, its nth homology, of
total rank µ, is a direct sum of character subspaces

Hn(V?,C) = ⊕χm=1Hχ , (2)

where m is the order of the automorphism g, and g acts as multiplication by χ on Hχ.
There is a standard way to define elements of the Hχ analogous to the ordinary Morse vanishing

cycles. Namely, let W be the quotient of the fibre V? by the action of the group Zm generated by g,
and W ′ ⊂W its subset of irregular orbits. Since all functions Fλ in the family F are g-invariant, a path
in Λ \ Σ from the point ? to a generic point of the discriminant defines – at least in all our cases – a
vanishing cycle σ ∈ Hn(W,W ′; Z), that is, a relative cycle which contracts to a point on the approach
to the discriminant (cf. [2, 10, 11, 12]). The inverse image of this relative cycle in V? consists of m cells
σ0 . . . , σm−1, with the orientation inherited from σ, and ordered in the cyclic way:

g(σi) = σ(i+1) modm.
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For appropriate values of χ, and in all the cases which will follow, the linear combination

σχ =
m−1∑
i=0

χiσi

is a cycle, and thus provides an element of Hχ. We call σχ a vanishing χ-cycle.
The monodromy representation of the fundamental group π1(Λ\Σ, ?) on Hn(V?,C) is a direct sum of

the representations on the individual summands Hχ. We denote the corresponding monodromy groups
Mχ.

Depending on the parity of n, the intersection form on Hn(V?,Z) naturally extends to Hn(V?,C) in
either an Hermitian or skew-Hermitian way. Assume that a vanishing χ-cycle σχ has a non-zero self-
intersection number 〈σχ, σχ〉. Then according to [4, 7, 10] the related Picard-Lefschetz operator in Mχ

is

hχ : c 7→ c+ (e− 1)
〈c, σχ〉
〈σχ, σχ〉

σχ,

where e is the eigenvalue of the operator on σχ. This is a (skew-)Hermitian reflection on Hχ.
To obtain a generating set of an Mχ, we proceed in the traditional manner. For this, we start with

a generic line L ⊂ Λ passing through the base point ?. Let c1, . . . , cr be the points at which L meets Σ.
We choose a distinguished system of paths on L, that is, paths γ1, . . . , γr in L, starting at ? and leading
to the ci, which have no self- and mutual intersections except for the point ? itself. The Picard-Lefschetz
operators hi,χ on the Hχ corresponding to the paths of the system generate the Mχ. Thus knowledge of
the eigenvalues of the hi,χ and of the intersection numbers of the χ-cycles vanishing at c1, . . . , cr yields
a description of the monodromy group Mχ.

2 Exceptional unimodal functions

2.1 The list of singularities

Now assume that f is one of the 14 exceptional unimodal singularities (see, for example, [3, 5]) and
n = 2. Table 1 gives a normal form of the quasihomogeneous member of each of the 14 one-parameter
families, along with the weights of the coordinates. The weights are chosen so that gcd(wx, wy, wz) = 1.
For such choice, the degree N of each of the 14 quasihomogeneous singularities coincides with the order
of its classical monodromy, which is usually called the Coxeter number of the singularity. Therefore, we
will refer to N as the Coxeter number of the function. Respectively, the transformation

C : (x, y, z) 7→ (εwx

N x, ε
wy

N y, εwz

N z)

from Example 1.1 will be called the Coxeter transformation of the function.
Table 1 also gives one of possible choices of a monomial basis of the local ring of each of the singu-

larities, and the weights of its elements.
The subscript in the notation of a singularity is its Milnor number µ. Pairs of functions with the

same Coxeter number are dual in the sense of Arnold. Any function with µ = 12 is self-dual.
An arbitrary member of a unimodal family is obtained by addition to the table normal form of a

multiple of its Hessian, that is, of a multiple of the versal monomial of top weight.

Assume we have two coordinate spaces, Cpu1,...,up
and Cqv1,...,vq

, with coordinates of positive integer
weights a1, . . . , ap and b1, . . . , bq. Then the space of map-germs from (Cp, 0) to (Cq, 0) has a natural
grading: a monomial summand uα1

1 . . . u
αp
p in the jth coordinate function is assigned grading α1a1 +

· · ·+ αpap − bj . For example, a quasihomogeneous automorphism g of Cp has all its monomial terms of
grading 0. The determinant Jac(g) of the Jacobi matrix of such automorphism is a non-zero constant,
which is easily seen if the coordinates are ordered by the increase of their weights.

In what follows, we are restricting our attention to quasihomogeneous symmetries of exceptional
unimodal singularities.

3



T
ab

le
1:

E
xc

ep
ti

on
al

un
im

od
al

si
ng

ul
ar

it
ie

s

ty
pe

an
d

no
rm

al
fo

rm
w
x

w
y

w
z

N
ve

rs
al

m
on

om
ia

ls
an

d
th

ei
r

w
ei

gh
ts

E
1
2

14
6

21
42

1
y

y
2

x
y
3

x
y

y
4

x
y
2

y
5

x
y
3

x
y
4

x
y
5

x
3

+
y
7

+
z
2

0
6

12
14

18
20

24
26

30
32

38
44

Z
1
1

8
6

15
30

1
y

x
y
2

x
y

x
2

y
3

x
y
2

y
4

x
y
3

x
y
4

x
3
y

+
y
5

+
z
2

0
6

8
12

14
16

18
20

24
26

32
E

1
3

10
4

15
30

1
y

y
2

x
y
3

x
y

y
4

x
y
2

y
5

x
y
3

y
6

y
7

y
8

x
3

+
x
y
5

+
z
2

0
4

8
10

12
14

16
18

20
22

24
28

32
Q

1
0

9
8

6
24

1
z

y
x

z
2

y
z

x
y

z
3

y
z
2

y
z
3

x
2
z

+
y
3

+
z
4

0
6

8
9

12
14

17
18

20
26

E
1
4

8
3

12
24

1
y

y
2

x
y
3

x
y

y
4

x
y
2

y
5

x
y
3

y
6

x
y
4

x
y
5

x
y
6

x
3

+
y
8

+
z
2

0
3

6
8

9
11

12
14

15
17

18
20

23
26

Z
1
2

6
4

11
22

1
y

x
y
2

x
y

x
2

y
3

x
y
2

y
4

x
3

y
5

y
6

x
3
y

+
x
y
4

+
z
2

0
4

6
8

10
12

12
14

16
18

20
24

W
1
2

5
4

10
20

1
y

x
y
2

x
y

x
2

y
3

x
y
2

x
2
y

x
y
3

x
2
y
2

x
2
y
3

x
4

+
y
5

+
z
2

0
4

5
8

9
10

12
13

14
17

18
22

Q
1
1

7
6

4
18

1
z

y
x

z
2

y
z

z
3

x
y

y
z
2

z
4

z
5

x
2
z

+
y
3

+
y
z
3

0
4

6
7

8
10

12
13

14
16

20
Z

1
3

5
3

9
18

1
y

x
y
2

x
y

y
3

x
2

x
y
2

y
4

x
y
3

y
5

x
y
4

x
y
5

x
3
y

+
y
6

+
z
2

0
3

5
6

8
9

10
11

12
14

15
17

20
S

1
1

5
4

6
16

1
y

x
z

y
2

x
y

y
z

z
2

x
y
2

y
2
z

y
3
z

x
2
z

+
y
z
2

+
y
4

0
4

5
6

8
9

10
12

13
14

18
W

1
3

4
3

8
16

1
y

x
y
2

x
y

x
2

y
3

x
y
2

x
2
y

y
4

x
2
y
2

y
5

y
6

x
4

+
x
y
4

+
z
2

0
3

4
6

7
8

9
10

11
12

14
15

18
Q

1
2

6
5

3
15

1
z

y
x

z
2

y
z

z
3

x
y

y
z
2

z
4

y
z
3

y
z
4

x
2
z

+
y
3

+
z
5

0
3

5
6

6
8

9
11

11
12

14
17

S
1
2

4
3

5
13

1
y

x
z

y
2

x
y

y
z

y
3

x
y
2

y
2
z

y
4

y
5

x
2
z

+
y
z
2

+
x
y
3

0
3

4
5

6
7

8
9

10
11

12
15

U
1
2

4
4

3
12

1
z

x
y

z
2

x
z

y
z

x
y

x
z
2

y
z
2

x
y
z

x
y
z
2

x
3

+
y
3

+
z
4

0
3

4
4

6
7

7
8

10
10

11
14

U
1
2

1
z

x
y

z
2

x
z

y
z

y
2

x
z
2

y
z
2

y
2
z

y
2
z
2

x
2
y

+
y
3

+
z
4

0
3

4
4

6
7

7
8

10
10

11
14

4



2.2 Classification of splitting symmetries

For each of the 14 singularities, the Hermitian intersection form on H2(V?,C) is non-degenerate of positive
signature 2. Our aim set in the introduction is to obtain equivariant monodromy groups Mχ which are
hyperbolic reflection groups, that is, the restriction of the intersection form to the summand Hχ is
non-degenerate and of positive signature 1. Hence the rank 2 positive subspace H+ ⊂ H2(V?,C) must
split between two character subspaces. We refer to a symmetry satisfying this condition as a splitting
symmetry , and to the two characters as the hyperbolic characters. We will use this terminology even in
the extreme situation, when the two Hχ are one-dimensional.

Lemma 2.1. Assume symmetry g is quasihomogeneous. Then g is splitting if and only if Jac(g) /∈ R.
In this case, the hyperbolic characters are Jac(g) and its conjugate.

Proof. According to [27], the rank 2 subspace in the cohomology H2(V?,C) dual to H+ is spanned by
the forms α = dx ∧ dy ∧ dz/dF? and Hess(f)α. The two forms are eigenvectors of the automorphism
g? of H2(V?,C), with the eigenvalues Jac(g) and its conjugate.

Corollary 2.2. Non-quasihomogeneous exceptional unimodal functions have no splitting symmetries.

Indeed, a symmetry of such a function preserves the modular term Hess(f). Hence both α and Hess(f)α
are in the same character subspace in the cohomology.

Lemma 2.3. Assume a symmetry g of a quasihomogeneous exceptional unimodal function is a power of
its Coxeter transformation: g = Cp. Then Jac(g) = ε−pN .

Since Jac(C) = ε
wx+wy+wz

N , this follows from the relation wx +wy +wz = N − 1 which holds for all
such singularities.

Our classificational result on normal forms of splitting symmetries, is

Theorem 2.4. Any invariant splitting symmetry g of a quasihomogenous exceptional unimodal singu-
larity f falls into one of the following categories.

a) The symmetry g of order m > 2 is a power of the Coxeter transformation C of function f .

b) Each of the corank 2 singularities E14, Z13,W13,W12 admits symmetries g of order m > 2 which
are powers of the Coxeter transformation composed with the involution ιz(x, y, z) = (x, y,−z).

c) Remaining symmetries are listed in Table 2.

Table 2 lists the symmetries up to a choice of a different generator of the same cyclic group.

Table 2: Special symmetries of Q12 and U12

f g : x, y, z 7→ g |g| g−codim
Q12 : x2z + y3 + z5 ε910x, ωy, ε5z ιxC 30 1
ιx : (x, y, z) 7→ ε710x, y, ε

3
5z ιxC

3 10 2
7→ (−x, y, z) −x, ω2y, z ιxC

5 6 5
U12 : x3 + y3 + z4 ω2x, y, iz σC 12 2
σ : (x, y, z) 7→ x, ωy,−z σC2 6 4
7→ (ωx, ω2y, z) ωx, ω2y,−iz σC3 12 2

ω2x, y, z σC4 3 6
U12 : x2y + y3 + z4 ε56x, ωy, iz ιxC 12 1
ιx : (x, y, z) 7→ ε6x, ω

2y,−z ιxC
2 6 2

7→ (−x, y, z) −x, y,−iz ιxC
3 4 4

ε56x, ωy, z ιxC
4 6 3
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ιx

ιx

σ

Figure 1: Symmetries of the Dynkin diagrams of Q12 (left) and U12 (right).

In Table 2, g-codim is the dimension of the base of a g-miniversal deformation.
According to Example 1.1, monomials to use in a g-miniversal deformation in case a) may be taken

to be exactly those from Table 1 of weights divisible by the order m of the symmetry g. A similar choice
in case b) coincides with that for the corresponding power of the Coxeter transformation. All these
monomials along with possible choices in case c) are listed later, in Table 3. For the corank 2 functions
not mentioned in part b), the symmetry ιz : (x, y, z) 7→ (x, y,−z) is CN/2.

Theorem 2.4, in particular, states that, for any quasihomogeneous exceptional unimodal singularity
f , we can make a quasihomogeneous coordinate change which diagonalises a splitting symmetry. In the
case of U12, there are two possible normal forms. This is similar to the two normal forms of the D4

singularity.
The sign change in part b) of the Theorem is the −id map on the vanishing homology. It does not

affect the actual summands in the decomposition (2). It only affects the indexation, changing the signs
of all characters.

The transformations ιx and σ in Table 2 correspond to the order 2 and 3 symmetries of the Dynkin
diagrams of the underlying singularities D6 and D4. The relevant symmetries of the Q12 and U12 Dynkin
diagrams are shown in Figure 1 (the diagrams are constructed as those for the direct sums D6 ⊕A2 and
D4 ⊕A3 of singularities, using the Gabrielov method [9]). Both ιx and σ have real determinants, hence
are able to split the subspace H+ only in combination with a power of the Coxeter transformation which
splits H+ itself, that is, has order greater than 2.

Proof of the Theorem is rather straightforward and we shall only mention its steps. It starts with
a diagonalisation of a symmetry which is a routine exercise on transformations of quasihomogeneous
functions. After that we are reduced to consideration of diagonal symmetries g : (x, y, z) 7→ (ax, by, cz)
of a trinomial function

∑
j=1,2,3 x

tj1ytj2ztj3 , that is, to solutions of the system of monomial equations
atj1btj2ctj3 = 1, j = 1, 2, 3. For the normal forms from Table 1, the number det(tjk) of such solutions is
N in case a) of the Theorem, and 2N in case b). For the normal forms from Table 2, this number is
either 2N or 3N . For each function, N solutions are powers of the Coxeter transformation. The rest
are products of such powers with respectively ιz, ιx, σ, σ2. Finally, we use Lemmas 2.1 and 2.3 to ensure
that the order of an involved power of the Coxeter element must be greater than 2.

3 Description of the hyperbolic monodromy groups

In this section we put together all the information sufficient to describe the action of the equivariant
monodromy on the hyperbolic character subspaces singled out in the previous section. The information
will be encoded into Dynkin diagrams.

3.1 Skeletons of Dynkin diagrams

First of all, each such diagram will contain a presentation of the corresponding generalised braid group,
that is, of the fundamental group of Λ \ Σ. For this, we are using the standard method going back to
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Zariski. We take a generic plane P in Λ, a generic line L in P , a generic base point ? in L, choose
a distinguished system of paths in L from ? to points of L ∩ Σ and take the set of simple loops in
L corresponding to the paths as generators of π1(Λ \ Σ, ?). These generators correspond to vertices
of the diagram. The vertices are ordered following the counterclockwise order in which paths of the
distinguished system leave the base point. However, all our diagrams will be trees, for which the order
may be done arbitrary and hence omitted (see [18]).

Relations between the generators are read from the pair (P, P ∩Σ): merger of two points – we never
have more than two – of L ∩ Σ at a singular point of P ∩ Σ provides a braiding relation on the two
generators, a and b, of the local monodromy group: aba . . . = bab . . . with k factors either side if the
singularity of P ∩ Σ is λ2

1 = λk2 , in some local coordinates λ1, λ2 on P. The only possibilities we are
meeting for the discriminants in our settings, are k = 2, 3, 4, 6. Respectively, the two vertices of the
diagram representing the two generators will be joined by either no edge (the generators commute), or
a simple, or a double or a triple edge.

The diagram obtained at this stage will be called the skeleton of the Dynkin diagram of the singularity
with symmetry.

It turns out that, in all but two of our cases, the discriminant of a symmetric singularity coincides
with the discriminant of one of the Weyl groups, hence for the skeleton of our Dynkin diagram we are
able to take the standard Dynkin diagram of the group. The empirical rule to get the right skeleton is
that the ratio of the weights of the parameters in a quasihomogeneous versal deformation should coincide
with the ratio of the degrees of basic invariants of the related Weyl group. The two exceptional cases
will be considered in section 3.4.

Each vertex of the diagram will be decorated outside with the singularity type of the relevant g-orbit
of critical points, and with the self-intersection number of the corresponding vanishing χ-cycle.

Each edge will be decorated with the intersection number of the two vanishing cycles. Since all
our diagrams are trees, it will not matter in which order we are intersecting the cycles. In the edge
decoration we have certain freedom: due to the ambiguities in constructing vanishing χ-cycles, the
intersection numbers are well-defined only up to multiplication by ±1 and by powers of χ.

No edge between two vertices is equivalent to the intersection number of the cycles being zero.

3.2 The eigenvalue of a Picard-Lefschetz operator

The last data included in our Dynkin diagrams will be the orders of the Picard-Lefschetz operators which
we will write inside the vertices. In fact each order r will be telling us the only non-trivial eigenvalue of
the operator: on the χ = Jac(g) hyperbolic subspace the eigenvalue is εr.

Since the character Jac(g) has a special role, we will use a special notation η for it.
Consider the cohomological direct sum

H2(V?,C) = ⊕χm=1H
χ , (3)

where the substitution g? is multiplication by χ on Hχ. Each summand Hχ here is dual to the summand
Hχ in (2).

We have α = dx ∧ dy ∧ dz/dF? ∈ Hη. The forms {ϕiα}, where the {ϕi} is the g-invariant part of
a monomial basis of the local ring Qf of f , form a basis of Hη. Therefore the g-codimension of the
function f coincides with the dimension of Hη. Since the ring Qf is Gorenstein, the g-codimension of f
also coincides with the dimension of Hη.

We observe that the subspace Hη is the only summand in (3) that contains a holomorphic nowhere-
vanishing 2-form, α. This helps us to find the eigenvalues of the basic operators acting on Hη.

Proposition 3.1. Consider the Picard-Lefschetz operator hη on Hη corresponding to a g-orbit of critical
points with a quasihomogeneous normal form ψ(x′, y′, z′). Choose the weights w′1, w

′
2, w

′
3 of the variables

so that the weight of the function ψ is 1. Then the only eigenvalue of hη distinct from 1 is exp(2πi(w′1 +
w′2 + w′3)).

Proof. The restriction of the family F to a line germ transversal to Σ may be brought near any of the
critical points to a local normal form ψ(x′, y′, z′) + ε. Locally, the cohomological operator h? = ⊕hχ is
induced by a loop in Cε going once around the origin in the positive direction. Its eigenvectors are the

7



2-forms ωj = αj(x′, y′, z′) dx′ ∧ dy′ ∧ dz′/dψ, where the αj form a monomial basis of the local ring of
function ψ. The transformation h? is the substitution x′ := exp(2πiw′1)x′ etc. Hence its eigenvalue on
ωj is exp(2πiweight(ωj)), where weight(ωj) = weight(αj) + w′1 + w′2 + w′3.

The only eigenform ωj that vanishes nowhere in a neighbourhood of our elementary critical point is
the one in which αj is a non-zero constant, that is, has weight 0.

Corollary 3.2. Assume a Picard-Lefschetz operator hη on Hη corresponds to a g-orbit of simple critical
points of type X = Ak, Dk, Ek. Then the only non-trivial eigenvalue of the operator hη is εN ′ where N ′

is the Coxeter number of the Weyl group X.

This is so since for simple function singularities w′1 + w′2 + w′3 = 1 + 1/N ′.

We recall the Coxeter numbers of the Weyl groups which we will need:

group Ak Dk E6 E7

Coxeter number k + 1 2(k − 1) 12 18

This means that the inner marking of the vertices by the order of the operators is excessive. However,
we prefer to keep it.

3.3 The diagrams of the hyperbolic groups

Theorem 3.3. For each exceptional unimodal function singularity with a splitting symmetry, there exists
a distinguished basis of the hyperbolic subspace Hη in the vanishing homology, for which the Dynkin
diagram is the one listed in the last column of Table 3 on page 9.

On the Hη, the monodromy representation is conjugate.
In Table 3, the symmetries g are given up to a choice of a different generator of the same cyclic

group. The table also singles out g-invariant subsets of the monomial bases of the local rings from Table
1. These are monomials which may be used to construct a g-miniversal deformation of the singularity.
For completeness, we have included g-codimension 1 singularities into the Table.

We have two kinds of diagrams in Table 3: standard (marked with ?) and non-standard. The latter
ones are collected in Figure 3 on page 11: first of all we list 2-vertex diagrams in the order they appear
in the Table, then similarly 3-vertex and finally 4-vertex diagrams. The inequality sign on an edge there
is open towards the longer root, that is, towards the vanishing η-cycle corresponding to a longer orbit of
critical points. In the notation of the diagrams of types B,F,G, the first upper index is the order of the
Picard-Lefschetz operators corresponding to short roots, and the second upper index denotes the same
for long roots. In the notation of the C type diagrams, the convention is opposite.

A ? in the last column of the Table indicates that the Dynkin diagram may be derived from Figure 2
in the following standard way. The Dynkin diagrams A(m)

k , D
(m)
k , E(m)

k have the usual ADE skeletons,
while the labelling of their vertices and edges are exactly as those of the A(m)

2 diagram. The Dynkin
diagrams B(m,m)

k , C
(m,m)
k , F

(m,m)
4 , G

(m,m)
2 are foldings of the diagrams in the previous sentence in the

usual manner, remembering to double (or triple) intersection numbers where two (or three) vertices or
edges merge. The Dynkin diagram C

(2,m)
k is constructed from C

(2,m)
3 by extending to the right with

subdiagrams of type A(m)
2 .

Am−1 Am−1m
εm−1

m m

−m −m

mA1 Am−1 Am−1

2 m m

m
m

εm−1

−2m −m −m

A
(m)
2 C

(2,m)
3

Figure 2: Standard Dynkin diagrams.
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Example 3.4. a) Consider the D6⊕A2 diagram from Figure 2.2. Its fusion along the A2 direction (that
is, replacement of each vertical A2 subdiagram by a vertex – see [10] for details) yields the D(3)

6 diagram.
Its further folding by the involution ιx delivers C(3,3)

5 .
On the other hand, the D6 fusion of the D6 ⊕A2 diagram gives us the A(10)

2 diagram from Figure 3.
Its roots are of different length than in the case of the standard A

(10)
2 with the A9 vertices (which

comes as a result of the A9 fusion of the A9 ⊕ A2 diagram, that is, arises from the order 10 symmetry
(x, y, z) 7→ (ε10x, y, z) of the function x10 + y3 + z2). However, the rank 2 reflection groups defined by
both standard and non-standard A

(10)
2 diagrams of course coincide.

b) Similarly, the A3 fusion of the diagram D4⊕A3 from Figure 2.2 gives us D(4,4)
4 . The ιx-folding of

the latter is C(4,4)
3 , while its triple folding by the symmetry σ provides G(4,4)

2 .

The D4 fusion of D4 ⊕ A3 gives us the non-standard A
(6)
3 diagram from Figure 3, which defines the

same reflection group as the standard diagram which one obtains by the A5 fusion of the A5⊕A3 Dynkin
diagram of x6 + y4 + z2.

Proof of Theorem 3.3 is based on case-by-case calculations, and we give only its outline here. The details
may be found in [16].

The proof starts with calculation of the discriminants of g-miniversal families. Only two of the
discriminants are not of Weyl groups, and the details of all calculations in these two cases are in the next
section.

The standard cases (marked ? in the Table) are dealt with immediately – as it is shown in Example
3.4 – via fusion along the direct Am−1 summands in the relevant diagrams of the functions f , and, if
needed, further double or triple folding.

In the non-standard cases rank 3 or 4 cases, the diagrams are constructed by using the adjacencies to
the simpler singularities with similar cyclic symmetries whose diagrams have been obtained in [10, 11,
13, 14, 15].

In the non-standard rank 2 cases, the self-intersection numbers of the vanishing A and D χ-cycles are
already known from the paper series just mentioned. For the E6 η-cycle, such number is retrievable from
[21]. For the order 9 symmetric E7 η-cycle, we need some routine calculations based on consideration of
the order 3 symmetry of E7 (see [10]).

Once we know the self-intersection numbers and the eigenvalues of the Picard-Lefschetz operators,
the braiding relation yields in a rank 2 case the absolute value of the intersection number of the two
vanishing η-cycles. The number itself is an integer linear combination of powers of η, and the ambiguities
in choices of the cycles already mentioned in Section 3.1 allow us to reduce it to the one given in Figure
3.

3.4 Two exceptional cases

3.4.1 E13|Z6

A monomial invariant miniversal deformation of this singularity may be taken in the form

x3 + xy5 + z2 + δxy2 + γy6 + βy3 + α .

Here α, β, γ, δ are the deformation parameters, and we can take

g = C5 : (x, y, z) 7→ (ωx, ωy,−z)

for the order 6 symmetry.
The calculations show that the discriminant consists of two irreducible components:

D4 : α = 0 ,
3A1 : 3125α3 − 729β5 − 13500βγ2α2 + 729β4δγ + 729β4γ3

+16δ6γ3 − 216δ3β3 − 16d6β + 16δ7γ + 216δ4β2γ + 216δ3β2γ3

+4125δ2γα2 − 5625δβα2 − 5832β2γ4α+ 6075β3γα
+2700δ2β2α+ 864δ3γ4α+ 888δ4γ2α+ 16200γ3δα2 − 5670β2γ2δα
−2592δ2βγ3α− 3420δ3βγα+ 11664γ5α2 + 16δ5α = 0 .
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Figure 3: The non-standard Dynkin diagrams for the hyperbolic groups arising in our classification.
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D4

3A1

−α↑

β
→

4

3

2

1

?

Figure 4: Inclusion of a generic planar section of the J10|Z6 discriminant (boxed) into that of E13|Z6.

In particular, the discriminant is different from the irreducible discriminant of the Shephard-Todd group
G29 [23]. This is in spite of the coincidence of the ratio (6 : 12 : 18 : 30) of the weights of the deformation
parameters with the ratio (4 : 8 : 12 : 20) of the degrees of basic invariants of the group.

A generic section of the discriminant is shown in Figure 4, taken with sufficiently large γ = δ =
const < 0. The figure emphasises the adjacency

E13|Z6 → J10|Z6,

which allows us to use the J10|Z6 Dynkin diagram as a building block for our hyperbolic case.

For a generic line in the base of our invariant deformation we take the dashed line in Figure 4. For
a distinguished system of paths in this line joining the base point ? with the discriminantal points, we
use arcs in the half-plane Im(−α) ≥ 0. This orders the discriminantal points as indicated in the Figure.
Such choice yields the Dynkin diagram below.

3A1 D4 3A1 3A1

2 6 2 2

3 3 3

−6 −3 −6 −6

Here the generators are h3, h2, h4, h1 from left to right. The subdiagram on the three left vertices is
that of J10|Z6 (see [13] where the singularity is called J10|Z3 since the symmetry there preserves z).
According to Figure 4, the generator h1 commutes with the subgroup generated by h2 and h3, and
satisfies h1h4h1 = h4h1h4. The latter implies that the first vanishing cycle may be chosen so that its
intersection number with the forth is 3.

3.4.2 U12|Z4

This time we take an invariant miniversal deformation in the form

x2y + y3 + z4 + δxz2 + γy2 + βy + α ,

and the symmetry is g = ιxC
3 : (x, y, z) 7→ (−x, y,−iz). The ratio (2 : 4 : 8 : 12) of the weights of the

deformation parameters does not repeat the ratio of the degrees of basic invariants of any Shephard-Todd
group.
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The discriminant has three irreducible components:

2A1 : α = 0 ,
A3 : (27α− 9βγ + 2γ3)2 + 4(3β − γ3)3 = 0 ,

4A1 : δ6 + 4γδ4 + 16βδ2 + 64α = 0 .

The union of the first two components is the B3 (equivalently C3) discriminant multiplied by the δ-axis.
To construct a generic two dimensional section of the discriminant shown in Figure 5, we took

γ = const < 0, and tilted slightly by setting δ = γ + εβ, for some fixed small ε > 0. In the Figure, the
A3 component is displayed in bold for distinction, and the dashed line is a generic line which provides
the generators. A distinguished system of paths in this line consists of four arcs in Im(−α) ≤ 0 joining
the base point ? with the discriminantal points.

2A1

A3

4A1

?

1

2

3
4

−α↑

β→

Figure 5: Generic section of U12|Z4 discriminant.

Let us show that the path choice yields the Dynkin diagram

2A1 A3 A3 4A1

2 4 4 2

2(1 + i) 2(1 + i) 4

−4 −4 −4 −8

in which the generators from left to right are h2, h1, h4, h3. We first notice that the adjacency

U12 → J10 : x2y + y3 + (tx+ z2)2, t ∈ C ,

is compatible with the symmetry and hence provides an invariant adjacency

U12|Z4 → J10|Z4 .

The latter singularity was studied in [13] under the name C
(4)
3 . Such notation emphasised that its

discriminant is isomorphic to the C3 discriminant, and one can take for its Dynkin diagram for the
characters ±i the above diagram with the leftmost vertex omitted. Moreover, consistently with that, a
generic planar section of the J10|Z4 discriminant is diffeomorphic to the one boxed in Figure 5 with the
component 2A1 omitted.

Now Figure 5 tells us that the operator h2 commutes with the subgroup generated by h3 and h4,
while (h1h2)2 = (h2h1)2. The last relation, the self-intersection of the second vanishing cycle being −4,
and the intersection number of the first two vanishing cycles being a Gaussian number confirms that the
first cycle may be chosen so that this intersection number is 2(1 + i).
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4 Projectivised rank 2 groups

Assume coordinates z0, . . . , zk in the space Ck+1 equipped with a hyperbolic Hermitian form are chosen
so that the form is −|z0|2 + |z1|2 + · · ·+ |zk|2. The group U(k, 1) ⊂ GL(k + 1,C) sends the cone

C = {−|z0|2 + |z1|2 + · · ·+ |zk−1|2 < 0}

into itself. Respectively, in the chart z0 6= 0 of CPk, the projective group PU(k, 1) acts on the ball{
|w1|2 + · · ·+ |wk|2 < 1

}
⊂ Ck , wj = zj/z0, j = 1, . . . , k.

The ball is the standard model for the complex hyperbolic k-space. In particular, for k = 1, this is the
Poincaré disk H.

For a triple of positive integers r1 ≤ r2 ≤ r3 such that 1
r1

+ 1
r2

+ 1
r3
< 1, there is a triangle ∆ in H

with angles π/r1, π/r2, π/r3, which is unique up to isometry. The hyperbolic reflections in the sides of
the triangle generate a group D(r1, r2, r3) of isometries of H, which has the triangle ∆ as its fundamental
domain.

We refer to the index 2 subgroup D+(r1, r2, r3) ⊂ D(r1, r2, r3) consisting of holomorphic transforma-
tions as a triangle group. Its fundamental domain ∆+ is the union of two adjacent copies of ∆.

Theorem 4.1. The projectivisations PMη of all rank 2 monodromy groups contained in Table 3 are
triangle groups D+(r1, r2, r3). Table 4 identifies all such groups.

Table 4: Triangle Groups

singularities (f, g) |g| Mη r1, r2, r3

(E12, C
3) 14 A

(7)
2 2, 3, 7

(Z11, C
3) 10 G

(10,2)
2 2, 3, 10

(Q10, C
2), (E14, C

2) 12 B
(12,3)
2 2, 3, 12

(Q10, C
3), (E14, C

3) 8 A
(8)
2 2, 3, 8

(W12, C
2) 10 B

(5,5)
2 2, 5, 5

(Z13, C
2) 9 B

(18,3)
2 2, 3, 18

(S11, C
2), (W13, C

2) 8 B
(8,4)
2 2, 4, 8

(Q12, C
3) 5 A

(10)
2 2, 3, 10

(U12, σC) 12 A
(12)
2 2, 3, 12

(U12, C
2) 6 B

(6,6)
2 2, 6, 6

(U12, σC
3) 12 G

(4,4)
2 3, 4, 4

The rule for the ri is as follows. The orbit space of the skeleton Weyl group is a weighted homogeneous
C2 isomorphic to the base of a g-miniversal deformation of the related symmetric singularity. If the Weyl
group is A2, the weight ratio is 2 : 3, which gives us two of the ri, the third being the order of a Picard-
Lefschetz operator corresponding to the only components of the discriminant. In the B2 and G2 cases,
the weight ratios 1 : 2 and 1 : 3 give us one of the ri, while the other two are the orders of Picard-Lefschetz
operators corresponding to the two discriminantal components.

This suggests a general Looijenga-type (cf. [17])

Conjecture 4.2. Let Λ = Ck+1 be the base of a g-miniversal deformation of an invariant singularity
from Table 3, and Σ ⊂ Λ the discriminant of the singularity. Let Λ′ be the quotient of the hyperbolic
cone C ⊂ Ck+1 by the monodromy group Mη, and Σ′ ⊂ Λ′ the set of irregular orbits. Then the pairs
(Λ,Σ) and (Λ′,Σ′) are biholomorphic.

The Conjecture, in particular, asserts that the complex hyperbolic reflection groups Mη are discrete.
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