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1 Introduction

In this work we examine the problem of integral hypercuboids for which the
internal core and the external shell are of equal volume. That is, the volume
of the entire hypercuboid is double that of the internal shell. We will call such
a hypercuboid a doubling hypercuboid. The problem is well known in two and
three dimensions. In this article, we have extended the treatment to include
higher (and lower) dimensions.

We have used a computer program to solve the program in four and five
dimensions. We show that the number of solutions in any given dimension is
finite, and give some general results about the smallest and largest possible
solutions.

Finally, we analyse our computer program to show that it has some limita-
tions when it comes to finding solutions in arbitrary dimensions.

2 Background

Martin Gardner in his textbook “Wheels, Life and other Mathematical Amuse-
ments” [1] describes a well known mathematical puzzle for schoolchildren:

Find a rectangle composed of unit squares for which the interior and
border comprise the same number of squares, and hence have the
same area.

We will call such a rectangle a doubling rectangle. The situation is described by
the equation

a1a2 = 2(a1 − 2)(a2 − 2), (1)

where a1, a2 are the lengths of the edges. Gardener reported that Longley-Cook
had solved the problem by rearranging Equation 1 to get

(a1 − 4)(a2 − 4) = 8, (2)

and noticing that (a1 − 4) and (a2 − 4) must be positive factors of 8. Up to
reordering, the only two such pairs are 2, 4 and 1, 8 giving the only two doubling
rectangles:

(a1, a2) = (6, 8), or (a1, a2) = (5, 12).

These are shown in Figure 1.
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Figure 1: The doubling rectangles (6, 8) and (5, 12)

Extending the problem to three dimensions Greenblatt [2] restates the problem.
Take a cuboid with integral side lengths (a1, a2, a3). Paint the outside, then
cut up the cuboid into unit cubes. If the number of cubes with paint on is
equal to the number without, we will call the cuboid a doubling cuboid. This is
equivalent to finding all positive integer solutions to

a1a2a3 = 2(a1 − 2)(a2 − 2)(a3 − 2). (3)

Greenblatt used an intuitive approach to find ten of the possible solutions, and
noted (with complete accuracy, as it turned out) that were “about ten more
solutions.” According to Gardener, the complete list of the 20 solutions was
found by Sleator using a computer program. Gardener presented the smallest
and largest solutions (the ‘size’ of a solution will soon be defined precisely) as

(a1, a2, a3) = (8, 10, 12), and (a1, a2, a3) = (5, 13, 132)

respectively. These are shown to relative scale in Figure 2.

Figure 2: The doubling cuboids (8, 10, 12) and (5, 13, 132).

3 Doubling Hypercuboids

In this section, we give some results about the generalisation of this problem
into other dimensions (note: we are careful no to say ‘higher dimensions’). We
define a doubling hypercuboid to be a hypercuboid with integral side lengths
(a1, a2, . . . , an) that satisfy the generalised equation
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n∏
i=1

ai = 2

n∏
i=1

(ai − 2), (4)

where 3 ≤ ai for all i so that the number of interior hypercubes is non-zero. It
will also be convenient to express Equation 4 in terms of base 2 logarithms:

n∑
i=1

log2

ai
ai − 2

= 1. (5)

Since f(x) = log2
x

x−2 is a strictly decreasing function for x > 2 (i.e. y > x ⇒
f(y) < f(x)), we deduce the stronger condition 4 ≤ ai since f(3) = log2 3 > 1 is
too large a summand. In order to avoid repetition we shall impose an ordering
on the side lengths. A reordering corresponds only to a repositioning of the
hypercuboid. We assume

4 ≤ a1 ≤ a2 ≤ · · · ≤ an. (6)

Proposition 3.1. The number of doubling hypercuboids in dimension n is finite.

Proof. Since f(x) = log2
x

x−2 is a strictly decreasing function for x > 2, the
effect of increasing any ai will corresponding to decreasing the corresponding
summand in Equation 5. To maintain equality, another summand must be
increased which in turn corresponds to decreasing some aj , j 6= i. Since aj is
bounded below according Equation 6, ai must be bounded above.

Since there are finitely many solutions we may discuss maximum and minimum
solutions. We therefore must define these notions. The solution for which an
takes its maximum value will be called the maximum solution. According to
the proof of Proposition 3.1, steadily increasing an will cause all ai, i 6= n, to
steadily decrease. Thus in particular a1 will achieve its lowest possible value in
the maximum solution.

We will called the solution for which a1 achieves its maximum value the
minimum solution. Similarly, an will achieve its lowest possible value in the
minimum solution.

In this sense, we think of the maximum and minimum solutions as mea-
suring how spread out the solutions are. Think of the solutions as being the
bellows of an accordion. The maximum solution corresponds to the bellows
being expanded, the minimum to them being compressed.

3.1 The Maximum Solution

The main result of this section is the following.

Theorem 3.2. Define the iterative sequence (mk)k≥1 as

m1 = 4, mk+1 = mk(mk − 1) (7)

Then the maximum solution in dimension n is given by

(a1, . . . , an), where ai =

{
mn if i = n,
1 +mi otherwise.

(8)
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The sequence (mk)k≥1 is sequence A204321 in [3]. Before the formal proof, we
will explain the intuition behind this theorem.

• When n = 1, there is only one solution

m1 = 4,

which is automatically the maximum solution.

• When n = 2, we can find the maximum solution by modifying the max-
imum solution for n = 1. Increasing the previous value for m1 by the
smallest possible amount means the contribution to Equation 5 coming
from the summand corresponding to m2 will be as small as possible, and
since the summands are strictly decreasing functions we maximise m2 and
therefore achieve the maximum solution. So we take 1 +m1 = 5 and solve
Equation 4 in order to find (1 +m1,m2) = (5, 12).

• When n = 3, we again look to achieve our maximum by modifying the
previous case, n = 2. We increase the values of m1 and m2 by an amount
to make their corresponding contributions to Equation 5 decreased by the
smallest possible amount. Thus we add 1 to m2 and do not modify m1.
This will guarantee thatm3 is as large as possible when solving Equation 4.
We find (1 +m1, 1 +m2,m3) = (5, 13, 132).

So given a maximum solution (1+m1, . . . , 1+mn−1,mn) in dimension n, we look
for a maximum solution in dimension n+1 of the form (1+m1, . . . , 1+mn,mn+1)
by solving Equation 4 to find mn+1 in terms of the given m1, . . . ,mn. The
following proof shows that this equation always has a positive integer solution
and derives the iterative function.

Proof. For n = 1 the only solution to Equation 4 is a1 = 4. We assume that the
theorem is true for all n ≤ k, for some fixed k. That is, the maximum solution
in dimension k is known and is

(1 +m1, . . . , 1 +mk−1,mk). (9)

Since this is a solution of Equation 4, it satisfies

mk

mk − 2

k−1∏
i=1

mi + 1

mi − 1
= 2. (10)

Following the heuristic argument preceding this proof we modify this solution
to find a solution for n = k + 1. That is, we try

(1 +m1, . . . , 1 +mk−1, 1 +mk,mk+1). (11)

Substituting in to Equation 4 gives

mk+1

mk+1 − 2

k∏
i=1

mi + 1

mi − 1
= 2. (12)

Using Equation 10 as our inductive hypothesis, Equation 12 may be cancelled
to give

mk+1 = mk(mk − 1)

as required. To conclude our proof, we need only remark that since mk−1 is a
positive integer, mk must also be a positive integer.
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Table 1 gives the first few terms in the sequence (mk)k≥1. This sequence grows
at an extremely large rate. Moreover, due to the similarity with well studied,
often chaotic, logistic map (see [4], for example) we have no expectation to find
a closed form for mk in terms of k alone. We can see that it doesn’t take long
at all before the size of mk becomes unmanageable.

Table 1: Values of iteratively defined sequence (mk)k≥1

k mk

1 4
2 12
3 132
4 17292
5 298, 995, 972
6 ≈ 8.9× 1016

3.2 The Minimum Solution

We are not aware of any direct methods to find the minimum solution in a given
dimension, so we will give bounds on the components of this solution. Let us
denote the minimum solution by (w1, . . . , wn).

Proposition 3.3. For dimension n ≥ 2 there is no solution (a1, . . . , an) such
that ai = aj for all i, j.

Proof. Assume otherwise for a contradiction. Let ai = α for all i, where α is a
positive integer. Then Equation 4 gives

αn = 2(α− 2)2,

or equivalently

α = 2
21/n

21/n − 1
.

Then α is irrational and, in particular, is not a positive integer.

Had such a solution existed, this would surely have been the minimum solution.

Proposition 3.4. For dimension n ≥ 2, there is a unique solution satisfying

ai+1 = ai + 2 for all i = 1, . . . , n− 1,

namely
ai = 2(n+ i), (i = 1, . . . , n).

Proof. This is an automatic consequence of substituting in to Equation 4 and
cancelling.

Propositions 3.3 and 3.4 immediately give the following corollary. We observe
that this corollary also holds when n = 1, in which case the solution is unique
and therefore both the maximum and minimum at the same time.
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Corollary 3.5. The minimum solution (w1, . . . , wn) satisfies

2(n+ 1) ≤ w1 ≤
⌊

2
21/n

21/n − 1

⌋
,⌈

2
21/n

21/n − 1

⌉
≤ wn ≤ 4n

where b·c : R→ Z is the standard floor function defined by bxc = max{z ∈ Z :
z ≤ x}, d·e : R → Z is the standard ceiling function defined by dxe = min{z ∈
Z : z ≥ x}.

Knowing these bounds decreases the computational complexity of finding
minimum solutions. These are presented in Table 2 for the first few dimensions,
along with the predicted lower and upper bounds on w1 and wn.

Table 2: Minimum solution by dimension

n Bounds on w1 Bounds on wn Minimum solution
1 [4, 4] [4, 4] 4
2 [6, 6] [7, 8] (6, 8)
3 [8, 9] [10, 12] (8, 10, 12)
4 [10, 12] [13, 16] (11, 12, 13, 15)
5 [12, 15] [16, 20] (14, 14, 16, 16, 18)
6 [14, 18] [19, 24] (16, 17, 18, 19, 20, 21)

4 Computational Results

In Table 3 we present all solutions in dimensions where there are sufficiently
few solutions to do so. For dimensions 4 and 5 we state the total number of
solutions.

Table 3: Solutions in low dimensions

n Solutions
1 4
2 (6,8) (5,12)

3 20 solutions:

(8, 10, 12) (8, 9, 14) (7, 10, 16) (8, 8, 18) (6, 14, 16)
(7, 9, 20) (6, 12, 20) (6, 11, 24) (7, 8, 30) (6, 10, 32)
(5, 22, 24) (5, 20, 27) (5, 18, 32) (5, 17, 36) (5, 16, 42)
(6, 9, 56) (5, 15, 52) (5, 14, 72) (7, 7, 100) (5, 13, 132)

4 374 solutions
5 21313 solutions

These explicit lists of results were found using a Maple program which is organ-
ised as follows. The variable a1 loops through all possible values. A sub-loop
sends a2 through all possible values, and so on. Once a nested loop has val-
ues for (a1, . . . , an) this is checked against Equation 4 to check whether it is a
solution or not. We let

D = d1(a1, . . . , an) = a1 + · · ·+ an
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be the standard d1 metric on Rn (modulus signs are omitted since in our case
ai is a positive integer for all i), and D is always a positive integer. According
to Theorem 3.2 and Corollary 3.5 we have bounds

2n(n+ 1) ≤ D ≤ (n− 1) +

n∑
i=1

mi, (13)

so we use D as our parent loop parameter. This is rather convenient as there
is no necessity to find all solutions in one attempt, we can instead set up our
program to run over a subinterval for D and repeat as necessary, perhaps on
several computers in parallel, until we have covered the entire range.

To find the local bounds on the component ak, thought of as a loop parameter
in our program, we note that its parent loop parameters are fixed. These are
a1, . . . , ak−1 and D. Then the minimum value ak can take is ak−1 according
to our ordering criterion. As ak gets larger, aj (j > k) get smaller according
to the proof of Proposition 3.1. Therefore let α ≥ ak−1 be a real number such
that (a1, . . . , ak−1, α, . . . , α) such that Equation 4 is satisfied. Then ak ≤ α.
But since our attention is restricted to the case when D is constant, finding α
is elementary. We have the local bounds on the loop parameter ak as

ak−1 ≤ ak ≤ bαc ,

where

α =
1

n− k

(
D −

k−1∑
i=1

ai

)
.

We recall the a1, . . . , ak−1 and D are fixed as loop parameters of parent loops.
Counting these loops for a fixed D is the same as counting the number of

restricted partitions of D (see [5], for example). Assume n ≥ 2. The number
of partitions of D into exactly n parts with each part at least 5 is the same as
the number of partitions of D′ = D − 5n into at most n parts. This in turn is
the same as the number of partitions of D′ such that each part is at most n.
According to Equation 13, we have

Dmin = n(2n− 3) ≤ D′ ≤ (−4n− 1) +

n∑
i=1

mi = Dmax

Let pn(d) denote the number of partitions of d such that each part is at most
n. Then the number of loops `(n) in our program is given by

`n =

Dmax∑
d=Dmin

pn(d).

For 2 ≤ n ≤ 4 the value of `(n) can be worked out directly using generating
series. For n ≥ 5 the large numbers involved are difficult to compute directly,
so we use the asymptotic approximation

pn(d) ≈ dn−1

n!(n− 1)!

due to [6]. This approximation is excellent in the cases where it can be verified.

7



Table 4:

n `(n)
2 18
3 73761
4 1.6× 1014

5 1.7× 1038

6 9.8× 1095

Table 4 gives the value of `(n) for 2 ≤ n ≤ 6.
The solutions in 1, 2 and 3 dimensions were known. We were able to extend
the classification to include all solutions in 4 and 5 dimensions, as well as giving
some general results on the extreme solutions. However, our methods for listing
all solutions in a given dimension are not sufficient in dimension n ≥ 6. For
such high dimensions, alternative methods must be sought.
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